We derive a novel thermodynamically consistent Navier-Stokes-Cahn-Hilliard system with dynamic boundary conditions. This model describes the motion of viscous incompressible binary fluids with different densities. In contrast to previous models in the literature, our new model allows for surface diffusion, a variable contact angle between the diffuse interface and the boundary, and mass transfer between bulk and surface. In particular, this transfer of material is subject to a mass conservation law including both a bulk and a surface contribution. The derivation is carried out by means of local energy dissipation laws and the Lagrange multiplier approach. Next, in the case of fluids with matched densities, we show the existence of global weak solutions in two and three dimensions as well as the uniqueness of weak solutions in two dimensions.

Two-Phase Flows with Bulk–Surface Interaction: Thermodynamically Consistent Navier–Stokes–Cahn–Hilliard Models with Dynamic Boundary Conditions

Giorgini A.;
2023-01-01

Abstract

We derive a novel thermodynamically consistent Navier-Stokes-Cahn-Hilliard system with dynamic boundary conditions. This model describes the motion of viscous incompressible binary fluids with different densities. In contrast to previous models in the literature, our new model allows for surface diffusion, a variable contact angle between the diffuse interface and the boundary, and mass transfer between bulk and surface. In particular, this transfer of material is subject to a mass conservation law including both a bulk and a surface contribution. The derivation is carried out by means of local energy dissipation laws and the Lagrange multiplier approach. Next, in the case of fluids with matched densities, we show the existence of global weak solutions in two and three dimensions as well as the uniqueness of weak solutions in two dimensions.
2023
Two-phase flows
Navier-Stokes-Cahn-Hilliard system
Bulk-surface interaction
Dynamic boundary conditions
File in questo prodotto:
File Dimensione Formato  
s00021-023-00811-w.pdf

accesso aperto

: Publisher’s version
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1256899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact