Two simple homogenization models suitable for the non-linear analysis of masonry walls in-plane loaded are presented. A rectangular running bond elementary cell is discretized by means of twenty-four constant stress three-noded plane-stress triangular elements and linear two-noded interfaces. Non-linearity is concentrated on mortar reduced to interface, exhibiting a holonomic behavior with softening. The paper shows how the mechanical problem in the unit cell can be characterized by very few displacement/stress variables and how homogenized stress-strain behavior can be evaluated by means of a small-scale system of non-linear equations. At a structural level, it is therefore not necessary to solve a homogenization problem at each load step in each Gauss point and a direct implementation into commercial software as an external user supplied subroutine is straightforward. Non-linear structural analyses are conducted on a variety of different problems, for which experimental and numerical data are available in the literature, in order to show that accurate results can be obtained with a limited computational effort.
Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry
BERTOLESI, ELISA;MILANI, GABRIELE;
2016-01-01
Abstract
Two simple homogenization models suitable for the non-linear analysis of masonry walls in-plane loaded are presented. A rectangular running bond elementary cell is discretized by means of twenty-four constant stress three-noded plane-stress triangular elements and linear two-noded interfaces. Non-linearity is concentrated on mortar reduced to interface, exhibiting a holonomic behavior with softening. The paper shows how the mechanical problem in the unit cell can be characterized by very few displacement/stress variables and how homogenized stress-strain behavior can be evaluated by means of a small-scale system of non-linear equations. At a structural level, it is therefore not necessary to solve a homogenization problem at each load step in each Gauss point and a direct implementation into commercial software as an external user supplied subroutine is straightforward. Non-linear structural analyses are conducted on a variety of different problems, for which experimental and numerical data are available in the literature, in order to show that accurate results can be obtained with a limited computational effort.File | Dimensione | Formato | |
---|---|---|---|
2016_CAS.pdf
Accesso riservato
Descrizione: 2016_CAS
:
Publisher’s version
Dimensione
6.87 MB
Formato
Adobe PDF
|
6.87 MB | Adobe PDF | Visualizza/Apri |
11311-999430_Milani.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.