A semi-analytical approach is presented for the analysis and optimization of laminated panels with non-symmetric lay-ups, and with the possibility of introducing requirements on the buckling load, the postbuckling response and the eigenfrequencies. The design strategy relies on the combined use of semi-analytical techniques for the structural analysis and genetic algorithms for the optimization. The structural analysis is performed with a highly efficient code based on thin plate theory, where the problem is formulated in terms of Airy stress function and out of plane displacement, expanded using trigonometric series. Eigenvalue analyses are performed to determine eigenfrequencies and buckling load, while an arc-length method is adopted for the postbuckling computation. The genetic algorithm is implemented with proper alphabet cardinalities to handle different steps for the angles of orientation, while specific mutation operators are used to guarantee good reliability of the optimization. To show the potentialities of the proposed optimization toolbox, two examples are presented regarding the design of balanced non-symmetric laminates subjected to linear and nonlinear constraints. The accuracy of the semi-analytical predictions is demonstrated by comparison with finite element results and benchmark cases taken from the literature.

Fast analysis of non-symmetric panels using semi-analytical techniques

VESCOVINI, RICCARDO;BISAGNI, CHIARA
2016-01-01

Abstract

A semi-analytical approach is presented for the analysis and optimization of laminated panels with non-symmetric lay-ups, and with the possibility of introducing requirements on the buckling load, the postbuckling response and the eigenfrequencies. The design strategy relies on the combined use of semi-analytical techniques for the structural analysis and genetic algorithms for the optimization. The structural analysis is performed with a highly efficient code based on thin plate theory, where the problem is formulated in terms of Airy stress function and out of plane displacement, expanded using trigonometric series. Eigenvalue analyses are performed to determine eigenfrequencies and buckling load, while an arc-length method is adopted for the postbuckling computation. The genetic algorithm is implemented with proper alphabet cardinalities to handle different steps for the angles of orientation, while specific mutation operators are used to guarantee good reliability of the optimization. To show the potentialities of the proposed optimization toolbox, two examples are presented regarding the design of balanced non-symmetric laminates subjected to linear and nonlinear constraints. The accuracy of the semi-analytical predictions is demonstrated by comparison with finite element results and benchmark cases taken from the literature.
2016
Analytical modeling; Buckling; Laminates; Plates; Postbuckling; Ceramics and Composites; Mechanics of Materials; Industrial and Manufacturing Engineering; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
VESCR_OA_02-16.pdf

Open Access dal 02/09/2018

Descrizione: Paper Open Access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri
1-s2.0-S1359836816307193-main.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/995608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact