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Abstract

A semi-analytical approach is presented for the analysis and optimization of laminated

panels with non-symmetric lay-ups, and with the possibility of introducing requirements on

the buckling load, the postbuckling response and the eigenfrequencies. The design strategy

relies on the combined use of semi-analytical techniques for the structural analysis and

genetic algorithms for the optimization. The structural analysis is performed with a highly

efficient code based on thin plate theory, where the problem is formulated in terms of

Airy stress function and out of plane displacement, expanded using trigonometric series.

Eigenvalue analyses are performed to determine eigenfrequencies and buckling load, while

an arc-length method is adopted for the postbuckling computation. The genetic algorithm

is implemented with proper alphabet cardinalities to handle different steps for the angles of

orientation, while specific mutation operators are used to guarantee good reliability of the

optimization. To show the potentialities of the proposed optimization toolbox, two examples

are presented regarding the design of balanced non-symmetric laminates subjected to linear

and nonlinear constraints. The accuracy of the semi-analytical predictions is demonstrated

by comparison with finite element results and benchmark cases taken from the literature.
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1 Introduction

In the past years, many efforts were directed towards the development of analytical and semi-

analytical methods for the fast analysis of composite panels [1–3]. In most cases, the methods

focused on symmetrically layered structures, thus avoiding the coupling between the in plane

and out of plane behaviour of the panel. Relatively few works dealt with non-symmetric lay-ups.

Similarly, several design optimization procedure were developed by restricting the design space

to the case of symmetric lay-ups. Examples are found in two works of the authors [4, 5], where

analytical tools are coupled with genetic algorithms, and symmetric lay-ups are assumed. In

order to fully exploit the tailoring opportunities offered by composite materials, novel analysis

tools are needed to handle more generic lay-up configurations. In this context, closed-form

solution are a useful mean to guarantee computational effectiveness, which is particularly useful

when dealing with optimization procedures. However, the complexity of the mechanical couplings

characterizing the response of generally layered panels often requires the introduction of several

simplifying assumptions. An early work of Chandra [6] presents a single-term solution to analyse

un-symmetric panels and is restricted to the case of axially compressed cross-ply configurations.

The Ritz method is adopted by Dano and Hyer [7] to study the response of non-symmetric

panels during the cooling from the cure temperature. More recently, closed-form solutions were

derived by Diaconu and Weaver [8] using a single-term approximation to represent the out of

plane displacement and considering compression load. Nie and Liu [9] extended the formulation

to account for shear loads and elastic restraints. In both in Refs. [8, 9], the approach is valid for

infinitely long panels only, and any mode change or snap through cannot be accounted for. Many

of the restrictions necessary to derive closed-form solution can be relaxed by adopting multiple-

series solutions. In these cases, the equations can be obtained analytically, but the solution is

computed numerically. An example is found in the work of Zhang and Matthews [10], where

the Airy stress function and the out of plane displacement are approximated with sine terms or

beam eigenfunctions. Zhang at al. [11] proposed a formulation based on Karman-Reissner plate

theory and asymptotic series solution to study the buckling and the postbuckling response of

non-symmetric plates. In both cases, the governing equations regard the out of plane equilibrium

and the strain compatibility. The total number of degrees of freedom is still smaller if compared

to finite elements, but significantly higher with respect to closed-form solutions. The present
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work presents an efficient semi-analytical approach based on multiple degrees of freedom, able

to capture mode-jumping phenomena, and characterized by analysis time comparable to closed-

form solutions. The approach, which is developed for non-symmetric plates with finite length and

loading conditions of compression and shear, is adopted in the context of a design optimization

based on genetic algorithms with linear and nonlinear constraints.

2 Semi-analytical model

The analysis tool is implemented in an efficient Matlab program and is developed for the analysis

of flat plates layered with symmetric and non-symmetric stacking sequences. Loading conditions

of compression and shear are accounted for.

Differently from the vast majority of papers dealing with plate analysis, the present approach

does not consider the plate as a self-standing unit, but as a part of a larger structure. This is

the typical situation observed in stringer- and frame-stiffened panels, where the overall structure

– the fuselage of an aircraft, for instance – is obtained by the repetition of several, self-similar,

structural elements. In many cases, it is still possible to isolate the single plate, but for a non-

symmetric panel the behaviour can be significantly different.

A sketch of the structure under investigation is provided in Figure 1(a). The model, which is

here used for the linear buckling analysis, is composed of a central plate, highlighted in gray,

surrounded by to half-bays along the longitudinal and the transverse direction. The central

plate element has dimensions a × b, while the dimension of the overall repeating unit is twice

the dimension of the central plate, i.e. 2a × 2b.

It is assumed that the structure undergoes local phenomena, meaning that the buckling modes

and the postbuckling deformed pattern are characterized by null out of plane deflections along

the boundaries, indicated in the figure as nodal lines, of the different plate elements composing

the unit. This assumption stems from the consideration that, in a real structure, stringer and

frames would be generally designed to avoid the onset of global deflections. Considering the

unit of Figure 1(a) as part of a larger structure, periodic conditions are imposed along the four

outer boundaries. More specifically, it is assumed that the rotations and displacements along

the outer left edge are equal to those of the right edge, and similarly for the upper and lower

edge. Regarding the in plane displacements, the panel is free to expand or contract in both the
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directions, so that no induced stresses are introduced during the loading process.

In the context of the postlbuckling analysis, the model can be further simplified, as illustrated

in Figure 1(b), where only the central plate is accounted for, and the effect of the surrounding

structure is recovered by means of equivalent springs.

Thin plate assumption is introduced, and Classical Lamination Theory (CLT) is applied. Refer-

ring to the central plate element, a Cartesian coordinate system is taken over the panel midsurface

with the x-axis directed along the longitudinal direction, the y-axis along the transverse direc-

tion and the z-axis to define a right-handed system. The laminate is layered with an arbitrary

number of plies, not necessarily stacked to guarantee the symmetry with respect to the midplane

of the panel. The only assumption here introduced is that of balanced laminate, meaning that

the presence of a ply at +θ requires the presence of a ply at -θ. The semi-inverse constitutive

law of the laminate is:  ξ

M

 =

 a e

−eT d

N

k

 (1)

where N and M are the force and moment resultant along the thickness, while ξ and k are the

membrane strains and the curvatures, respectively. The matrices a, d, e of Eq. (1) are related

to the A, B, D matrices of CLT through the relations:

a = A−1 e = −A−1B d = D−BA−1B (2)

Under the assumption of balanced laminate and using the Voigt notation, the only null terms of

Eq. (1) are a16 and a26.

2.1 Simplified buckling analysis

In the context of the analysis approach here described, the buckling analysis is conducted for

two reasons. Firstly, to obtain an estimate of the buckling load of the structure, and secondly to

determine the amount of restraint provided by the surrounding structure to the central panel. As

illustrated next, the portion of structure that surrounds the central panel of Figure 1(a) can be

condensed to a set of equivalent torsion springs along the plate boundaries. This model reduction

allows to perform the postbuckling analysis with a restricted number of degrees of freedom and,

consequently, with a reduced computational effort.

Although non-symmetric plates may exhibit a non-bifurcational behaviour [12], the buckling
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analysis can be performed by introducing simplifying assumptions with regard to the panel

response in the pre-buckling range. In particular, the assumptions regard the pre-buckling out of

plane displacement, which is taken as identically null, and the pre-buckling stress distribution,

which is constant over the panel domain.

The problem is developed in the context of a variational framework, on the basis of the minimum

potential energy principle. The total potential energy of the periodic structure of Figure 1 is

written as:

δΠ2 =
∑

Ne

(
1

2

∫
S

(
ξTN + kTM

)
dS + Uload

)
+ P (3)

where Ne denotes the number of plates composing the assembly of Figure 1, Uload is the variation

of strain energy due to the pre-buckling loads, and P is a penalty contribution to enforce the

continuity of rotations between adjacent plate elements. The present approach is based on a

mixed formulation, where the problem is formulated in terms of the out of plane displacement w

and the Airy stress function F . Within this context, the vector of in plane forces per unit length

N is defined as:

NT =
{
F,xx F,yy −F,xy

}
(4)

where the comma followed by an index denotes differentiation with respect to that index. After

substituting Eq. (2) into Eq. (5), it is obtained:

δΠ2 =
∑

Ne

(
1

2

∫
S

(
NTaN + kTdk

)
dS + Uload

)
+ P

=
∑

Ne

(Um + Ub) + Uload + P

(5)

It can be observed that the first two terms of Eq. (5) correspond to the membrane and the

bending energy, while there are no terms responsible for the expected coupling between in plane

and out of plane behaviour. This apparently unexpected behaviour is due to adoption of a mixed

approach, but does not imply that any sort of simplifying assumption is introduced. In particular,

the functional of Eq. (5) cannot be minimized unless the fulfillment of the compatibility condition

is guaranteed a priori. It follows that that buckling condition is here obtained in the form of a

constrained minimization problem. In particular, the first variation of the potential energy of

Eq. (5) is set to zero, subject to the requirement that the linear compatibility equation, for each
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element, is identically satisfied:

δ
(
δΠ2

)
= 0

subject to: LL(F,w) = 0
(6)

where:

LL(F,w) = a11F,yyyy + (2a12 + a66)F,xxyy + a22F,xxxx − e21w,xxxx

− (e11 + e22 − 2e66)w,xxyy − e12w,yyyy − (2e26 − e61)w,xxxy − (2e16 − e62)w,xyyy

(7)

The terms aik and eik are the components of the in plane compliance and the coupling matrix,

respectively.

It is now important to highlight that the functions w and F are not independent each other,

but they are related via the compatibility equation LL(F,w) = 0. From the fulfillment of the

compatibility requirement, it follows that the expression of F depends on the terms eik (see

Eq. (7)) and, when F is substituted back into Eq. (5), the expected coupling between in plane

and out of plane response is recovered.

It is remarked that the present formulation leads to the fulfillment of the compatibility and

equilibrium conditions in strong- and weak-form, respectively. Other formulations can be found

in the literature based on two-field principles (see, for instance, [2, 13, 14]), where both the

conditions are imposed in weak-form. In these cases, the problem is solved as an unconstrained

minimization problem, and no a priori enforcement of the compatibility condition is needed.

In the context of the present buckling analysis, the functions F and w are intended as the

variation with respect to the pre-buckling condition. Under the assumptions of thin-plate theory,

the bending energy is:

Ub =
1

2

∫
S

(
d11w

2
,xx + 2d12w,xxw,yy + d22w

2
,yy + 4d66w

2
,xy

+4d16w,xxw,xy + 4d26w,yyw,xy) dS

(8)

where the terms dik are the components of the reduced bending stiffness. It is worth observing

that the coupling terms due to the non-symmetry of the laminate enter in the bending energy

expression because the matrix d is function of B.

The membrane contribution is:

Um =
1

2

∫
S

(
a11F

2
,yy + 2a12F,xxF,yy + a22F

2
,xx + a66F

2
,xy

)
dS (9)
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As done for the out of plane displacement, the function F is here intended as the variation with

respect to the pre-buckling condition.

The expression for the incremental strain energy relative to the applied loads is:

Uload = −1

2
λN̂x

∫
S

w2
,x dS + λN̂xy

∫
S

w,xw,y dS (10)

where N̂x and N̂xy are the pre-buckling forces per unit length and λ is the buckling multiplier.

The penalty term of Eq. (5) is obtained as the superposition of two terms as:

P =

Np∑
i=1

Pi,long +

Np∑
i=1

Pi,trans (11)

where Np is the number of penalty terms to be imposed, and Pi,trans and Pi,long are the penalty

energy contributions due to the enforcement of the compatibility conditions along the transverse

and the longitudinal edges, respectively. The expression of the terms of Eq. (11), relative to the

generic plates i and j, is:

Pi,long =
1

2
kt

∫ a

0

(wi,y − wj,y)
2

dx (12)

Pi,trans =
1

2
kt

∫ b

0

(wi,x − wj,x)
2

dy (13)

where kt is the penalty stiffness, whose value has to be taken sufficiently high to ensure the

fulfillment of the compatibility condition. The same strategy was applied in [5, 15], proving to

be an efficient and robust approach, insensitive to the value of kt in a wide range of values.

Ritz solution

The stationarity condition of Eq. (6) is imposed referring to the method of Ritz. For each plate

element, the out of plane displacement is approximated with a double series of sine terms as:

w =

RS∑
mn

qmn sin
mπx

a
sin

nπy

b
= Nwqi (14)

The unknown amplitudes qmn of Eq. (14) are collected in the column vector qi of dimensions

R×S defined as qi = {q11 · · · q1Sq21 · · · q2S · · · qRS}T. The matrix of the shape functions Nw is

defined accordingly.

The expansion of Eq. (14) guarantees that the buckling mode is null at the boundaries, meaning

that it is characterized by nodal lines at the intersection between the elements composing the
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structure of Figure 1.

To ensure the respect of the compatibility requirement of Eq. (6), the Airy stress function is

expanded as the sum of two contributions:

F (x, y) = G(x, y) +H(x, y) (15)

where the functions G and H describe the variation of the in-plane forces with respect to the

pre-buckling condition.

The expression of the functions G and H is sought in the form:

G(x, y) =

RS∑
mn=1

gmn cos
mπx

a
cos

nπy

b
= Ngg = Ngdiag[bg]qi (16)

H(x, y) =

RS∑
mn=1

hmn sin
mπx

a
sin

nπy

b
= Nhh = Nhdiag[bh]qi (17)

where the relation between the amplitudes gmn, hmn and qmn is given by the vectors bg and

bh, whose expression is obtained by substitution of Eqs. (16) and (17) into the compatibility

condition of Eq. (6). The generic component bgi of the vector bg is:

bgi =
(2e26 − e61)

(m
a

)3 n

b
+ (2e16 − e62)

m

a

(n
b

)3

a11

(n
b

)4

+ (2a12 + a66)
(mn
ab

)2

+ a22

(m
a

)4 (18)

Similarly, the vector bh has components:

bhi =
e21

(m
a

)4

+ (e11 + e22 − 2e66)
(mn
ab

)2

+ e12

(n
b

)4

a11

(n
b

)4

+ (2a12 + a66)
(mn
ab

)2

+ a22

(m
a

)4 (19)

As observed in Eqs. (16) and (17), the unknown amplitudes of the Airy stress function can be

expressed in terms of the amplitudes qi, which are the only unknown of the problem. In the

context of the buckling analysis, the relation is linear.

It is also observed that Eqs. (18) and (19) depend on the laminate constitutive terms eik, which

are responsible for the coupled behaviour between in plane and out of plane response.

The bending energy is directly computed by substitution of Eq. (14) into Eq. (8), and is written

as:

Ub =
1

2
qT
i Kbqi (20)
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where Kb is the reduced bending stiffness matrix.

After substitution of Eqs. (16) and (17) into Eq. (9), the membrane energy can be written as a

quadratic term in the unknown q:

Um =
1

2
gTαggg +

1

2
hTαhhh =

=
1

2
qT
i K

lin
m qi

(21)

where the matrices αgg, αhh collect the coefficients resulting from the analytical integration of

Eq. (9) and the membrane stiffness matrix Klin
m is:

Klin
m = diag[bg]Tαggdiag[bg] + diag[bh]Tαhhdiag[bh] (22)

After substitution of Eq. (14) into Eq. (10), the strain energy increment due to the pre-buckling

load is:

Uload = λ
1

2
qT
i (Kc + Ks)qi (23)

In a similar way, the out of plane displacement of Eq. (14) is substituted into Eqs. (12) and

(13). Observing that the penalty terms involve the deflection of different plate elements, the

corresponding strain energy is written in terms of the global vector of unknowns q:

P =
1

2
qTPq (24)

where the vector of global unknowns is defined as:

q =
{
qT

1 qT
2 qT

3 qT
4

}T
(25)

After substitution of Eqs. (20), (21) and (23) into Eq. (5), the buckling eigenvalue problem is

obtained as:

δ
(
δΠ2

)
= δqT

(
K̂ + λK̂load

)
q = 0 (26)

where the stiffness matrix K and the loading stiffness matrix Kload are given by:

K̂ = diag[Kb] + diag[Klin
m ] + P (27)

K̂load = diag[Kc + Ks] (28)

The minimum among the positive eigenvalues obtained from the solution of the eigenvalue prob-

lem of Eq. (28) is the multiplier of the pre-buckling condition. The corresponding eigenvector
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determines the buckling shape of the structure.

It is worth noting that the free vibration problem can be easily derived from Eq. (26) by replacing

the loading stiffness with the mass matrix. In this case, the corresponding eigenvalue problem

reads:

δqT
(
−ω2M̂ + K̂

)
q = 0 (29)

Condensation of the surrounding structure

Thanks to the symmetry of the problem, the portion of structure around the central plate can be

condensed, making it possible a reduction of the problem size for the postbuckling analysis. Due

the symmetry of the buckling modes, the following relation holds between the eigenvector of the

central element, here denoted with the subscript element 1, and those relative to the surrounding

plates:

qi = ±q1 with i 6= 1 (30)

The relation of Eq. (30) illustrates that the buckling modes of the central element is always equal

or opposite to the deflection of the surrounding elements. According to Eq. (30), the global vector

of the degrees of freedom can then be related to the degrees of freedom of the element 1 as:

q =


I

T2

T3

T4

q1 = Tq1 (31)

where the transformation matrices Ti have ±1 terms along the diagonal, and are determined on

the basis of the results of the buckling eigenvalue analysis.

The relation of Eq. (31) provides the transformation law to reduce the penalty term P to the

degrees of freedom of the central plate element. Indeed, from Eqs. (26) and (27), it can be

observed that:

δqTK̂q = 4δqT
1

(
Kb + Klin

m + Kk

)
q1 (32)

where:

Kk =
1

4
TTPT (33)

The expression of Eq. (32) illustrates that the minimization of the elastic energy stored in the

structure of Figure 1 is identical to the minimization of the energy stored in the central plate,
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provided that the penalty term is condensed according to Eq. (33). This term, which is quadratic

in q, accounts for the fact that the deflection of the central plate influences the deflection of the

surrounding structure. It can be thought as the energy associated to the deflection of equivalent

torsion springs, distributed along the boundaries of the central plate element, whose strain energy

is:

Uk =
1

2
qT

1 Kkq1 (34)

2.2 Postbuckling analysis

Consistently with the approach adopted for the buckling analysis, the postbuckling formulation

is developed within a variational framework. On the basis of the results obtained with the linear

buckling analysis, the model is restricted to the central plate of the periodic structure, illustrated

in Figure 1(b), and the effect of the surrounding portion of structure is recovered by accounting

for the quadratic energy term of Eq. (33).

The nonlinear expression of the total potential energy is now considered. In particular, the

expression reads:

Π = Ub + Um + Uk + Vc + Vs (35)

where Ub and Um are the bending and the membrane energies, while the contribution Uk accounts

for the portion of structure around the central plate, according to Eq. (34). The terms Vc and

Vs of Eq. (35) are the potentials of the compressive and shear loads. Referring to Eq. (35),

the equilibrium configuration is obtained by solving of the following constrained minimization

problem:

δΠ = 0

subject to: LL(F,w) +
1

2
LNL (w,w + 2w0) = 0

(36)

where the function w0 defines the panel initial imperfection. The constraint of Eq. (36) is the

compatibility requirement, expressed in terms of the linear operator of Eq. (7) and the nonlinear

operator LNL, whose expression is:

LNL(w,w + 2w0) = w,xx (w + 2w0),yy − 2w,xy (w + 2w0),xy + w,yy (w + 2w0),xx (37)

The membrane and the bending contributions, expressed in terms of Airy stress function and

out of plane displacement, are given by Eqs. (8) and (9). It is worth noting that the functions w
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and F are, in this context, the actual out of plane displacement and Airy stress functions, and

not the variation with respect to the pre-buckling configuration, as for the buckling analysis.

Following Refs. [16–18], the potential of the compression load is:

Vc = bNx∆U (38)

where Nx is the average stress resultant during the loading phase, taken positive in compression,

and ∆U is the average end shortening of the panel, defined as:

∆U =
Nx

b

∫
S

(
−ξxx +

1

2
w2
,x + w0,xw,y + w0,yw,x

)
dS (39)

The potential of the shear load is expressed as:

Vs = Nxy

∫
S

(w,xw,y + w,xw0,y + w,yw0,x) dS (40)

Ritz solution

The postbuckling formulation is expressed as function of the unknowns w and F . The out of plane

displacement w is expanded according to Eq. (14), while the Airy stress function is obtained, as

illustrated next, by imposing the solution of the nonlinear compatibility requirement of Eq. (36).

In addition, the nonlinear formulation accounts for the presence of initial imperfections, which

are approximated as a double sine expansion:

w0 =

RS∑
mn

q0
mn sin

mπx

a
sin

nπy

b
= Nwq0 (41)

where the amplitudes q0 are known a priori to achieve the desired geometric imperfection shape.

To ensure the respect of the compatibility requirement of Eq. (36), the Airy stress function is

expressed as the sum of five contributions:

F (x, y) = −1

2
Nxy

2 −Nxyxy + FNL(x, y) +G(x, y) +H(x, y) (42)

The first two terms of Eq. (42) are responsible for the uniform stress distribution over the panel,

while the functions G, H and FNL describe the stress redistribution due to the panel deflection.

In particular, the terms G and H are those reported in Eqs. (16) and (17) and depend linearly

on the deflection amplitude q. The function FNL is relative to the postbuckling nonlinear stress

redistribution, and its expression is:

FNL(x, y) =

2R,2S∑
mn=0

fmn cos
mπx

a
cos

nπy

b
= NNLf (43)
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The vector of amplitudes f can be expressed in terms of q by substitution of Eqs. (14), (41) and

(43) into the compatibility requirement of Eq. (36). It can be demonstrated that the generic

coefficient fi of the vector f is a quadratic function of the deflection amplitudes q, and is obtained

by:

fi = qTBsym
i

(
1

2
q + q0

)
(44)

where Bsym
i = Bi+BT

i , and Bi is a matrix of scalar coefficients, built according to the approach

reported in [16, 18].

As observed in Eqs. (16), (17) and (44), the unknown amplitudes of the Airy stress function can

be expressed in terms of the amplitudes q, which are the only unknown of the problem. After

substitution of Eq. (42) into Eq. (9), the membrane energy can be written as the sum of three

contributions:

Um = U lin
m + Unl,ff

m + Unl,fg
m (45)

The first term of Eq. (45) is quadratic in q and is null for symmetric panels. The second and

the third terms are quartic and cubic in q, respectively.

After collecting the coefficients obtained from the analytical integration of the membrane energy

in the matrices αff and αfg, it is obtained:

U lin
m =

1

2
qTKlin

m q Unl,ff
m =

1

2
fTαff f Unl,fg

m =
1

2
fTαfgg (46)

The bending energy is directly computed by substitution of Eq. (14) into Eq. (8), and the

corresponding discrete expression is reported in Eq. (20).

Regarding the potential of the compression load, the contribution is obtained by substitution of

Eq. (14) into Eq. (38), and is written as:

Vc = Nxaba11 +
1

2
qTKc

(
q + 2q0

)
(47)

where the matrix Kc collects the numerical coefficients obtained from the closed-form integration

of the integrals involved in the expressions of the potential of the external loads.

The potential of the shear loads reads:

Vs =
1

2
qTKs

(
q + 2q0

)
(48)

where Ks is determined by integrating Eq. (40) analytically.
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Arc-length solution procedure

The nonlinear equations governing the postbuckling response of the panel are derived following

the approach discussed in Refs. [10, 11], where a perturbation arc length approach is imple-

mented. The main advantage of this solution scheme relies in its robustness to capture mode

changes or snap through. This feature is particularly interesting in the context of an optimization

procedure, where it becomes mandatory to guarantee that each of the structural analysis ter-

minates without convergence issues. The set of nonlinear equations governing the postbuckling

behaviour of the panel are derived in rate form as:

∂Π,η

∂q
= Kq,η + sΛ,η = 0 (49)

where Λ and η are the load and the rate parameters, respectively.

Due to the introduction of the load parameter Λ, the discrete problem is augmented by intro-

ducing a constraint equation. Following [19], the augmented problem reads:
Kq,η + sΛ,η = 0

Λ,η + qTq = 1

(50)

The first term in the right hand side of Eq. (49) is the tangent stiffness matrix, while the second

contribution is the incremental load vector, which are defined as:

K =
∂2Π

∂q2
(51)

s =
∂2Π

∂q∂Λ
(52)

The tangent stiffness matrix K is obtained as the sum of two contributions, a linear term inde-

pendent on the configuration, and a nonlinear term which is function of the current deformation.

The matrix is so re-written as:

K = Klin + Knl
m (q) (53)

where the linear contribution is derived from:

Klin =
∂2
(
Ub + U lin

m + Uk + Vc + Vs

)
∂q2

=

= Kb + Klin
m + Kk + Λ (Kc + Ks)

(54)
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The second contribution to the tangent stiffness matrix is due to the nonlinear terms of the

membrane energy, as observed in Eqs. (45) and (46). The two terms are written as:

Knl
m = Knl,ff

m + Knl,fg
m (55)

where Knl,ff
m is obtained by recalling the second of Eq. (46). In particular, it is:

Knl,ff
m =

∂2Πnl,ff
m

∂q2
=

=
∑ ∂fi

∂q

∂2Πnl,ff
m

∂fi∂fj

∂fj
∂q

+
∑ ∂Πnl,ff

m

∂fi

∂2fi
∂q2

(56)

From the expressions of Eqs. (44) and (46), the nonlinear part of the stiffness due the membrane

energy is obtained as:

Knl,ff
m =

2R,2S∑
i,j=0

Bsym
i

(
q + q0

)
αff
ij

(
q + q0

)T
Bsym
i + viB

sym
i (57)

where the term vi is the i-th component of the vector v, obtained as:

v = αff f (58)

and the components of the vector f are obtained according to Eq. (44).The second contribution

to the nonlinear part of the tangent stiffness matrix regards the coupling between the functions

F and G, and is derived as:

Knl,fg
m =

∂2Πnl,fg
m

∂q2
=

=

2R×2S∑
i=0

R×S∑
j=1

∂fi
∂q

∂2Πnl,fg
m

∂fi∂gj

∂gj
∂q

+
∂gj
∂q

∂2Πnl,fg
m

∂gi∂fj

∂fj
∂q

+

2R×2S∑
i=0

∂Πnl,fg
m

∂fi

∂2fi
∂q2

=

= K̃ + K̃
T

+ wiB
sym
i

(59)

where the matrix K̃ is defined as:

K̃ =

2R×2S∑
i=0

Bsym
i

(
q + q0

)
αfgij b̃

g

j (60)

The row vector b̃
g

j is the j-th row of the matrix diag[bg], and the term wi of Eq. (59) is the i-th

component of the vector w, obtained as:

w = αfgBgq (61)

The derivation of the incremental load vector s is straightforward, and is obtained as:

s =
∂2 (Vc + Vs)

∂q∂Λ
= Λ (Kc + Ks)

(
q + q0

)
(62)
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3 Optimization algorithm

The optimization process is here performed with a code based on genetic algorithms (GA) mod-

ified for the design of composite structures. In particular, new genetic operators are introduced

to improve the reliability of the code, on the basis of the investigations conducted by Nagendra

et al. [20]. The code is implemented in Matlab language, and can be easily linked to the struc-

tural analysis tool described in the previous section. As input data, the optimization routine

requires the definition of the number of variables, their range, the cardinality of the alphabet to

encode the variables, the functions to compute the fitness and the constraints, the penalty terms

associated to each of the constraints, and the parameters relative to the mutation operators.

The optimization process begins with the initial construction of a pool of candidates, i.e. the

first generation of individuals. The quality of each of the individuals, i.e. the first set of possi-

ble designs, is initially established by evaluation of their fitness function, including the penalty

contribution due to the constraints that the design is required to satisfy.

Depending on the fitness of each single individual, the members of the first generation are sorted

and submitted to the selection process, which can be based on different criteria. In the present

implementation, a probability is attributed to the individuals based on their ranking: the fittest

members are those with highest chance of being selected for becoming parents, while the less fit

are unlikely to be selected. In any case, a non null probability is associated to all the members

of the pool, so that even the less fit designs have a chance of becoming parents. This aspect,

together with the other mutation operators, plays an important role in guaranteeing that the

optimization process does not converge to local minima.

For each couple of parents, new individuals are created by applying the crossover operator. It

consists in recombining the information encoded in the chromosomes of the selected parents to

obtain a new design. The single point crossover is here considered among the various implemen-

tations proposed in the literature.

The mutation operator is applied just after the application of the crossover. In this case, mu-

tation is performed by means of four different operators. The last step of the genetic process

consists in the insertion of the offspring into the new generation. The optimization code allows

to define an arbitrary number of elite members. The overall procedure is repeated until a conver-

gence criterion is met. Different criteria are implemented in the code, consisting in the maximum
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number of generations, fitness functions evaluations and generations with no improvement of the

best individuals.

3.1 Chromosome encoding

Each individual of the population is represented by a chromosome, which is responsible for

encoding the genetic information. To this aim, different alphabets can be used, the binary

representation being one of the most common. In the context of stacking sequence optimization,

design variables are represented by the angles of orientation of each ply, and the problem becomes

an integer optimization problem (or a mixed-integer problem if, in addition, other real variables

are involved). A suitable strategy for encoding the angles of orientation of a laminate consists

in the use of alphabets of higher cardinality, where an integer number is associated to each ply

angle. The cardinality of the alphabet is then dependent on the number of plies made available

for the design. For instance, a 3-ary alphabet is considered if the plies can be oriented at 0◦,

45◦, 90◦.

In the present work, alphabets of cardinality of 7 and 13 are considered, in order to allow the

design of panels with plies oriented from 0◦ to 90◦, with steps of 15◦ and 7.5◦, respectively. In

the first case, the value 0 means 0◦, 1 means 15◦, 2 stands for 30◦, and so on. Furthermore, the

pool of available design is restricted to that of balanced laminates. To this aim the chromosome

encoding is performed such that each gene denotes a couple of plies oriented at ±θ. This strategy

is inspired by the results reported in Ref. [21], where it was demonstrated that a penalty approach

is not efficient to enforce the balance constraint, adding noise to the fitness function. An example

of chromosome decoding is reported in Eq. (63) assuming the case of cardinality 7:

[303441]→ [±45◦/± 0◦/± 45◦/± 60◦/± 60◦/± 15◦] (63)

It is remarked that the optimization code implemented allows the introduction of any encoding

rule, so that the assumption of balanced laminates, or the use of different alphabets can be easily

modified. Laminates with a variable number of plies are handled by associating an integer value

to a dummy ply.
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3.2 Genetic operators

The crossover operator is here implemented in its one-point version, meaning that one single cut

point is randomly chosen for each of the two parents. The crossover operator is slightly modified

when a variable number of plies is allowed. In this case, the chromosome is firstly resorted by

packing all the N empty plies in the first N genes, and the crossover cut point is forced to fall in

the remaining genes. Regarding the mutation operators, specific operators are implemented to

improve the reliability of the procedure, as demonstrated in Ref. [20].

The first operator is the ply swap, consisting in a random selection and the swap of two plies.

The use of this operator is motivated by the fact that inner and outer plies have different influ-

ences on the bending stiffness of the laminate. Therefore the external plies reach convergence

faster than the internal ones.

A second mutation operator is the angle ply mutation that consists in randomly picking one gene

and altering its value with any of the possible angles. In presence of a variable number of plies,

two more operators are available, namely the ply addition and ply deletion operators. Their ap-

plication consists in the addition of a randomly oriented ply, or the deletion of a ply. It is noted

that ply addition and deletion operators are applied to the innermost ply, the less influential in

terms of laminate bending stiffness. With this approach, abrupt changes of laminate bending

stiffness, which may have a too drastic impact on the mutated individual, are avoided.

After crossover and mutation operations, the new generation is created applying an elitist se-

lection. Elitism is a well know strategy to improve the convergence properties of the genetic

algorithm. On one hand, it has the effect of speeding-up the convergence to a maximum, but

on the other hand it weakens the explorative ability of the method in the design space. Elitism

is here implemented by taking the fittest individual. Elite members are passed intact to the

following generation in order to guarantee that the fittest individuals are not lost due to the

application of the genetic operators during crossover and mutation.

The selection is performed with a tournament of variable size. The effect of enlarging the tour-

nament size is to increase the selective pressure, with the risk of reducing the diversity in the

new population. For this reason, a size of 2 is here considered.
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4 Analysis results

Before illustrating the results of the optimization, the quality of the semi-analytical predictions

is assessed by presenting the comparison with results available in the literature and numerical

simulations.

To this aim, the commercial finite element code Abaqus is adopted, and the finite element meshes

are realized by modeling the full representative unit of Figure 1. The four outer sides of the

structure are subjected to periodic boundary conditions. In particular, the two transverse edges

are forced to undergo equal translations along the z direction and rotations around the x-axis,

and are forced to remain straight. The longitudinal edges are subjected to a constraint equation

forcing the nodal degrees of freedom to display equal translations along z and rotations around

y. Regarding the translation along the x direction, the axial load is introduced by defining a

constraint equation:

uupper
x − ulower

x = ∆U (64)

where uupper
x and ulower

x are the set of nodes belonging to the upper and lower edges of the panel,

respectively, while ∆U is the imposed shortening.

In a similar fashion, shear loads are introduced using a constraint equation defined as:

uupper
y − ulower

y = ∆V (65)

The finite element analyses are conducted by performing a preliminary eigenvalue analysis to

determine the bifurcation buckling load. The nonlinear response is studied with a quasi-static

nonlinear step, assuming an initial imperfection equal to the first buckling mode with maximum

nondimensional amplitude w0/t of 1%. The mesh is realized using four node S4R elements, whose

dimension is set, case by case, to ensure the convergence of the results.

4.1 Comparison with literature

A first set of results deals with the analysis of long non-symmetric plates studied by Diaconu

and Weaver [8], whose closed-form solutions are used for comparison purposes.

The material is graphite epoxy, whose elastic properties are E11/E22=20, G12/E2=0.5 and

ν12=0.25. The plates have aspect ratio a/b equal to 20, thus the longitudinal direction is much
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longer than the transverse one. Consequently, the boundary effects associated to the loaded

edges are negligible. The thickness-to-width ratio is 100, and transverse shear effects can be

neglected.

Four distinct lay-ups are considered, in order to assess the effect of different elastic couplings

on the quality of the semi-analytical predictions. All lay-ups are obtained by stacking four plies

because those with more plies tend to exhibit less anisotropy [8]. More specifically, the stacking

sequences of the plates are:

• Lay-up 1: [90◦/0◦/90◦/0◦]

• Lay-up 2: [0◦/0◦/0◦/90◦]

• Lay-up 3: [45◦/45◦/-45◦/-45◦]

• Lay-up 4: [90◦/90◦/45◦/-45◦]

To quantify the elastic coupling due to the plate non-symmetry, a possible measurement is given

by the nondimensional parameter ηB, defined as:

ηB =
λ2

b2
e12

4
√
a11a22d11d22

(66)

where λ denotes the number of half-waves of the buckling pattern. The parameter provides a

measure of the coupling induced by the term e12, which has a relevant impact on the postbuckling

response of axially compressed plates [8].

According to the parameter of Eq. (66), the highest degree of coupling is exhibited by Lay-up 4.

Lay-ups 1 and 2 are characterized by a milder coupling, whereas ηB is null for Lay-up 3.

All the results are computed by assuming an initial imperfection equal to 1% of the plate thickness

and using a number of 15 × 40 functions, chosen according to a preliminary convergence analysis.

The non-dimensional applied load Nx

Nx,iso
is reported versus the maximum out of plane deflection

in Figure 2. Here, Nx,iso denotes the buckling force per unit length of a plate with a quasi-

isotropic laminate.

It is worth highlighting that the closed-form solution of Ref. [8] does not account for the effect of

the initial imperfections. This explains the slight difference observed in proximity of the buckling

load for the four lay-ups.

Close agreement can be observed in Figures 2(a) and 2(c) between semi-analytical, closed-form
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and Abaqus results for the Lay-ups 1 and 3 that are characterized by the smaller amount of

anisotropy in terms of the parameter ηB. Contrarily, a slight discrepancy can be observed in

Figure 2(b), where the amount of anisotropy is higher in comparison to Lay-ups 1 and 3. In

this case, Abaqus and the semi-analytical results are quite close, but describe a stiffer response

of the plate in comparison to the prediction of Ref. [8]. This discrepancy is explained recalling

that the closed-form solution of Ref. [8] is developed for a single plate, without accounting for

the effect of the surrounding structure. For a single plate, the zero moment condition at the four

edges promotes the onset of out of plate deflections, whose entity increases with the parameter

ηB. On the contrary, for the periodic structure of Figure 1, bending moments along the contour

are continuous, but not necessarily zero. Thus, the effect of the zero moment condition is not

observed, and the resulting out of plane displacements are smaller. In this sense, the portion

of structure surrounding the central plate has a stiffening effect on the plate. This behaviour

is more pronounced for Lay-up 4, reported in Figure 2(d), which is the laminate characterized

by the highest value of the parameter ηB. In this case, semi-analytical and Abaqus results are

in good agreement, while the response predicted in Ref. [8] is drastically different. To further

verify the correctness of the results, a finite element simulation is conducted by considering the

plate as single entity, thus avoiding the modeling of the surrounding structure. The results are

reported in Figure 2(d) and they match well with the predictions of Ref. [8].

The comparisons of Figure 2 allow to conclude that the discrepancies obtained by modeling

the structure as a single plate or as part of a periodic structure increase with the degree of

anisotropy induced by the laminate non-symmetry. Furthermore, it is important to highlight

that the response of a non-symmetric periodic plate tends to be always of bifurcational type.

Referring to Figure 2, all the semi-analytical results, which are obtained for a periodic plate,

display a bifurcational instability. This consideration holds even in the case of Figure 2(d),

where, on the contrary, the single plate displays noticeable pre-buckling deflections and a non-

bifurcational instability.

Another response commonly investigated in the postbuckling analysis of structures is the force-

shortening curve. For the four lay-ups here investigated, the results are presented in Figure 3.

With regard to the quality of the semi-analytical predictions, close matching is observed for all

the configurations, except Lay-up 4.
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4.2 Comparison with finite element results

To further investigate the potentialities of the semi-analytical approach, the assessment of the

results is extended to consider a panel of finite length and exhibiting a complex postbuckling

response. In particular, a panel with aspect ratio a/b=1.8 and b/h=100 is considered. The panel

is layered with the lay-up [0◦/0◦/0◦/90◦] and is loaded with a compressive load. The maximum

out of plane displacement is reported in Figure 4 for different load levels, together with the buck-

led mode predicted using the semi-analytical method and using a Abaqus nonlinear analysis. In

the initial loading phase, the panel exhibits a single half-wave along the transverse and longitu-

dinal directions. Then, a sudden change of configuration is experienced by the structure, whose

deflected pattern changes from one to three longitudinal half-waves. As observed from Figure 4,

semi-analytical and numerical predictions are in close agreement despite the complexity of the

postbuckling response of the panel.

The numerical/semi-analytical comparison is presented in terms of force-displacement curve in

Figure 5. The initial part of the curve, relative to the pre-buckling field, is almost linear. Then, a

progressive, smooth reduction of the stiffness is observed in the postbuckling field, until a sudden

snap-back happens at a load level of approximately Nx/Nx,iso=2. The snap of the curve is quite

sharp and, as seen in Figure 5, is well captured by the semi-analytical method. It is highlighted

that the finite element solution, achieved using an arc-length solution procedure, is particularly

hard in terms of convergence issues. Several iterations are performed throughout the solution

process and a number of preliminary analyses was necessary to avoid premature stopping. On

the other hand, the arc-length procedure implemented in the semi-analytical procedure does not

reveal any convergence issues, and the analysis is terminated in less than a second of CPU time.

Additional comparisons are proposed to further clarify the potentialities of the method. Two

panels made of IM7/8552, whose properties are reported in Table 1, are studied with regard

to their postbuckling behaviour due to compression and shear loadings. The width-to-thickness

ratio is fixed to 100, and the ratio between the longitudinal and the transverse length is equal to

3.

The two panels are layered with lay-ups [0◦/90◦/0◦/90◦] and [0◦/90◦/45◦/-45◦] and, henceforth,

will be denoted as Panel A and Panel B.

The results obtained for the case of pure axial loading are presented in Figures 6-7. In particular,
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the out of plane displacements are reported in Figure 6 for different load levels. The good quality

of semi-analytical prediction can be appreciated especially for the second configuration, where a

relatively complex path is observed due to a postbuckling snapping phenomenon. Good agree-

ment is also visible in Figure 7 in terms of force-displacement curves. Here, the sharp snap-back

of the second configuration is clearly seen in the plot of Figure 7(b).

The behaviour of the two panels loaded in shear is illustrated in Figures 8-10.

The maximum out of plane deflection is presented in Figure 8. Abaqus and semi-analytical

results are very similar for the cross-ply configuration, while a more pronounced difference is

achieved for the second configuration. This discrepancy can be attributed to the highest de-

gree of anisotropy of Panel B in terms of the nondimensional parameter ηB. Furthermore, the

constitutive law of Panel A is relatively simple due to the cross-ply stacking sequence, while

additional terms of elastic couplings characterize the constitutive law of Panel B. It follows that

the deflected surface of Panel B has a more complex shape, and its description can be captured

with a lower degree of accuracy. It can be noted that, as expected, the Ritz models are always

stiffer in comparison to the finite element model due to the lower number of degrees of freedom

involved in the approximation of the unknowns.

In any case, the postbuckled pattern is predicted with a satisfactory degree of accuracy in both

cases. Figures 9 and 10 illustrate the deformed configurations obtained with the semi-analytical

approach and Abaqus nonlinear analyses for two distinct load levels. In particular, Figure 9 is

relative to the cross-ply panel, while Figure 10 displays the behaviour of the panel with lay-up

[0◦/90◦/45◦/-45◦].

In both cases, the semi-analytical method correctly predicts the number of half-waves, three in

the first case and two in the second, as well as their skew during the loading process. It can

be observed that the increasing skewness experienced by the panel during the loading process is

also accurately captured.

Buckling and vibration

Most of the analytical development of the present formulation deals with the nonlinear postbuck-

ling analysis. However, to provide a comprehensive overview of the capabilities of the method,

the comparison is presented also in terms of buckling and vibration analysis. A summary of the
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results for the Panels A and B is presented in Table 2, where the nondimensional frequencies and

buckling loads are presented. The buckling results deal with pure compression and shear loads.

Overall, the agreement between numerical and semi-analytical results is very good. The free

vibrations are accurately predicted, with percent differences close to zero for both panels. Simi-

larly, the buckling predictions are below 1% for Panel A, i.e. the cross-ply configuration, where

the assumption of uniform pre-buckling stress distribution is effectively satisfied. Contrarily, the

pre-buckling stress field is not exactly uniform for Panel B, for which higher percent differences

are consequently achieved, both in case of compression and shear. In any case, the errors against

finite elements are below 5%, and can be still considered an acceptable approximation.

5 Application to design optimization

To illustrate an application of the fast design procedure, the optimal design of two panels is

discussed, introducing requirements on the linear and nonlinear response.

A panel with length of 450 mm and width of 150 mm is considered. The laminate is layered with

a number of 16 plies, whose elastic properties are those of Table 1, and the overall thickness of the

laminate is 2 mm. The optimization problem is presented in the form of a stacking optimization

problem, where the design variables are the angles of orientation of the plies. The constraint of

balanced laminate is enforced a priori by assuming a stacking sequence with plies at ±θ, thus

reducing the total number of design variables to 8. Each ply is allowed to assume an orientation

between 0◦ and 90◦. Two possible angle steps are assumed. In a first optimization the plies are

allowed to vary with an angle of 15◦. The total number of possible designs is equal to 78, and

the optimal configuration is denoted as Opt15. In a second run, the plies can vary with a step of

7.5◦, thus allowing a huge enlargement of the design space to 138 combinations (more than 800

million possible designs). In this case, the optimum is denoted as Opt75.

The optimization aims to improve the panel response with respect to a quasi-isotropic baseline

with lay-up [±45◦/0◦2/90◦2/0
◦
2]s, quantifying the possible benefits due to the adoption of different

ply steps. The optimization problem is formulated as the maximization of the linear buckling

load subjected to a constraint regarding the first natural frequency and the maximum out of
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plane displacement in the postbuckling field. In particular, the problem is formulated as:

max Pbuck

subject to:


ω > ω

wmax > wmax at P = 2.5P buck

(67)

The overline denotes the reference quantities, which are established by analyzing the baseline

configuration. In particular, the first natural frequency of vibration is ω=1600 rad/s, while the

buckling load is P buck=23.1 kN.

The constraint on the maximum out of plane displacement is wmax =3.90 mm, and is measured

at a load level equal 2.5 times the buckling load. This latest condition ensures that, within

the design space under investigation, all the panels are required to work in the postbuckling

field. Indeed, the solution of the unconstrained buckling maximization problem identifies the

configuration with all the plies at ±45◦ as the optimal solution and the corresponding buckling

load is Pbuck=27.8 kN. It is important to highlight that the configuration that maximizes the

buckling load exhibits a maximum out of plane displacement of 6.98 mm when P=2.5 P buck,

therefore violating the nonlinear constraint here imposed.

5.1 Optimization results

The results obtained for the two optimizations are here discussed. The parameters to set up

the analysis are the same in both cases, apart from the size of the population, which is equal to

30 individuals when the ply step is 15◦, and equal to 50 when the step is 7.5◦. The number of

elite individuals is fixed to 1, so guaranteeing that the best member of each generation is passed

intact to the following generation. Fitness scaling is performed using a rank-based strategy, where

the fitness is scaled depending on the rank of each individual instead of its score. The stopping

criterion is based on the maximum number of generations without improvements. The procedure

terminates if the average change in the best fitness function value over 50 generations is less than

or equal to a tolerance set of 1e-8. The first optimization terminates after 81 generations, while

the second one requires a total of 92 generations to meet the stopping criterion. Considering the

numbers of individuals used in the two cases, the overall number of function evaluations is equal

to 2430 for the first run and 4600 for the second one. In any case, a reduced computational effort

is guaranteed in both cases, thanks to the efficient implementation of the analysis tool. All the
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analysis are performed on Core i7 2.30 GHz laptop, with 16 GB of RAM. The computational

time to perform the two optimizations is approximately 39 and 77 minutes, respectively. To

highlight the benefits associated to the use of the formulation, it is interesting to provide a

comparison against the time needed by an equivalent finite element procedure. The estimate is

here obtained by considering the analysis time of the reference configuration, and assuming that

the same time is needed for each of the configurations analyzed during the optimization process.

Conservatively, the time for the mesh generation and the parsing of results are assumed to be

null. Under these assumptions, the overall time would be of 38 and 72 hours, and the speedup

due to the use of the formulation is then, approximately, 55. The two optimal configurations

and the corresponding values of buckling load, first natural frequency and maximum out of plane

displacement are summarized in Table 3.

As observed from Table 3, the two optimal solutions satisfy the design constraints and allow

an increase of the panel buckling load. The Opt15 is characterized by a buckling load 10.8%

higher compared to the baseline. On the other hand, no significant improvement is achieved

by enlarging the design space as for the Opt75 design. In this case, the buckling load is 11.7%

higher than the baseline, but still very close to the Opt15 configuration.

6 Conclusions

The development of a semi-analytical procedure with postbuckling capabilities has been discussed

together with its implementation in the context of an optimization toolbox based on genetic

algorithms. The main advantage of the approach is the possibility of considering a wide class of

laminates, including those characterized by midplane un-symmetry, in a very efficient manner.

The comparison with Abaqus simulations allowed to conclude that the method combines the

rapidity typical of closed-form solutions with the accuracy of finite element analyses.

The results have highlighted the effects induced by the non-symmetry of the lamination scheme,

illustrating a substantial difference in the response exhibited by single plates and plates operating

in the context of periodic structures, as in the case of stiffened panels.

The efficient implementation of the method, which allows to perform a nonlinear analysis in

less than a second of computational time, makes it suitable to perform structural optimizations,

even when large design spaces are of concern. The speedup against standard finite element-
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based procedures is between one and two orders of magnitude and, for this reason, the proposed

optimization toolbox can successfully be employed to fully exploit the tailoring opportunities

offered by unconventional layups. Two applicative examples have been discussed regarding the

buckling maximization of panels layered with 16 plies and ply angles oriented with steps of

7.5◦ and 15◦. The results have illustrated the possibility of improving the buckling load of

the structure, while restricting its postbuckling deflections at a given load level. No significant

improvement was observed by enlarging the design space from ply steps of 15◦ to 7.5◦, but

general conclusions cannot be drawn as loading conditions were restricted to the case of pure

compression. The benefits of considering ply steps of 7.5◦ could be more relevant if more complex

loading conditions are investigated. In this sense, further investigation is still needed.
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Table 1: Material properties of IM7/8552.

E11 (MPa) E22 (MPa) G12 (MPa) ν12 ρ (kg/m3)

IM7/8552 150000 9080 5290 0.32 1570
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Table 2: Comparison of buckling and eigenfrequency analysis for Panel A and B.

ω

(
b2

h

)√
ρ

E2
Nx,buck

b2

E2h3
Nxy,buck

b2

E2h3

Abaqus Semi-an. % diff Abaqus Semi-an. % diff Abaqus Semi-an. % diff

Panel A 8.02 8.02 0.00 14.73 14.73 0.00 30.96 31.17 0.68

Panel B 6.13 6.14 0.16 19.13 18.47 3.45 19.56 18.60 4.90

31



Table 3: Optimization results.

Layup Pbuck ω wmax

[kN] [rad/s] [mm]

Ref. values [±45/02/902/02]s 23.1 1600 3.87

Opt15 [±60/± 45/± 30/± 02/± 30/± 45/± 60] 25.6 1913 3.90

Opt75 [±52.5/± 60/± 22.5/± 7.52/± 30/± 60/± 52.5] 25.8 1909 3.78
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Figure 1: Panel geometry and reference system: (a) representative unit used for linear buckling

analysis, (b) reduced model used for postbuckling analysis.
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Figure 2: Curves of nondimensional load per unit length versus maximum out of plane displace-

ment for panels with a/b=20 and different lay-ups: (a) [90◦/0◦/90◦/0◦], (b) [0◦/0◦/0◦/90◦], (c)

[45◦/45◦/-45◦/-45◦], (d) [90◦/90◦/45◦/-45◦].
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Figure 3: Curves of nondimensional load per unit length versus axial strain for panels with

a/b=20 and different lay-ups: (a) [90◦/0◦/90◦/0◦], (b) [0◦/90◦/90◦/90◦], (c) [45◦/45◦/-45◦/-

45◦], (d) [90◦/90◦/45◦/-45◦].
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Figure 4: Panel with a/b=1.8 and lay-up [90◦/0◦/90◦/0◦]. Behaviour at: (a) initial postbuckling range, (b) beginning of the

unloading phase, (c) unloading phase, (d) deep-post buckling field, after mode transition.
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Figure 5: Nondimensional load per unit length versus axial strain for panel with a/b=1.8 and

lay-up [90◦/0◦/90◦/0◦].
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Figure 6: Nondimensional load per unit length versus out of plane displacement for panels loaded

in compression with lay-up: (a) [0◦/90◦/0◦/90◦], (b) [0◦/90◦/45◦/-45◦].
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Figure 7: Nondimensional load per unit length versus versus axial shortening for panels loaded

in compression with lay-up: (a) [0◦/90◦/0◦/90◦], (b) [0◦/90◦/45◦/-45◦].
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Figure 8: Nondimensional load per unit length versus out of plane displacement for panels loaded

in shear with lay-up: (a) [0◦/90◦/0◦/90◦], (b) [0◦/90◦/45◦/-45◦].
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(a) (b)

(c) (d)

Figure 9: Contour of out of displacements for Panel A: (a) initial postbuckling, semi-analytical,

(b) initial postbuckling, Abaqus, (c) deep postbuckling, semi-analytical, (d) deep postbuckling,

Abaqus.
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(a) (b)

(c) (d)

Figure 10: Contour of out of displacements for Panel B: (a) initial postbuckling, semi-analytical,

(b) initial postbuckling, Abaqus, (c) deep postbuckling, semi-analytical, (d) deep postbuckling,

Abaqus.
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