The authors’ research group has undertaken for about a lustrum a comprehensive research project, focusing on both experimental characterization and numerical predictive modelling of the self-healing capacity of a broad category of cementitious composites, ranging from normal strength concrete to high performance cementitious composites reinforced with different kinds of industrial (steel) and natural fibers. In this paper reference will be made to normal strength concrete: both autogenous healing capacity has been considered and self-healing engineered through the use of crystalline admixtures. A tailored methodology has been employed to characterize the healing capacity of the investigated concrete, based on comparative evaluation of the mechanical performance measured through 3-point bending tests. Tests have been performed to pre-crack the specimens to target values of crack opening, and after scheduled conditioning times to selected exposure conditions, including water immersion and exposure to open air. The healing capacity has been quantified by means of the definition and calculation of suitable “healing indices”, based on the recovery of the mechanical properties, including load bearing capacity, stiffness, ductility, toughness etc. and correlated to the amount of crack closure also “estimated” through suitable indirect methodologies. Chemical characterization of the healing products by means of SEM has been performed to understand the different mechanisms governing the observed phenomena and also discriminate among the different amounts of recovery of the different mechanical properties. As a further step a predictive modelling approach, based on modified microplane model, has been formulated. This incorporates the self-healing effects, in particular, the delayed cement hydration, as well as the effects of cracking on the diffusivity and the opposite repairing effect of the self-healing on the micro-plane model constitutive laws. The whole experimental and numerical investigation represents a comprehensive and solid step towards the reliable and consistent incorporation of self-healing concepts and effects into a durability-based design framework for engineering applications made of or retrofitted with self-healing concrete and cementitious composites.

Experimental Assessment and Numerical Modeling of Self Healing Capacity of Cement Based Materials via Fracture Mechanics Concepts

FERRARA, LIBERATO;DI LUZIO, GIOVANNI;KRELANI, VISAR
2016

Abstract

The authors’ research group has undertaken for about a lustrum a comprehensive research project, focusing on both experimental characterization and numerical predictive modelling of the self-healing capacity of a broad category of cementitious composites, ranging from normal strength concrete to high performance cementitious composites reinforced with different kinds of industrial (steel) and natural fibers. In this paper reference will be made to normal strength concrete: both autogenous healing capacity has been considered and self-healing engineered through the use of crystalline admixtures. A tailored methodology has been employed to characterize the healing capacity of the investigated concrete, based on comparative evaluation of the mechanical performance measured through 3-point bending tests. Tests have been performed to pre-crack the specimens to target values of crack opening, and after scheduled conditioning times to selected exposure conditions, including water immersion and exposure to open air. The healing capacity has been quantified by means of the definition and calculation of suitable “healing indices”, based on the recovery of the mechanical properties, including load bearing capacity, stiffness, ductility, toughness etc. and correlated to the amount of crack closure also “estimated” through suitable indirect methodologies. Chemical characterization of the healing products by means of SEM has been performed to understand the different mechanisms governing the observed phenomena and also discriminate among the different amounts of recovery of the different mechanical properties. As a further step a predictive modelling approach, based on modified microplane model, has been formulated. This incorporates the self-healing effects, in particular, the delayed cement hydration, as well as the effects of cracking on the diffusivity and the opposite repairing effect of the self-healing on the micro-plane model constitutive laws. The whole experimental and numerical investigation represents a comprehensive and solid step towards the reliable and consistent incorporation of self-healing concepts and effects into a durability-based design framework for engineering applications made of or retrofitted with self-healing concrete and cementitious composites.
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9
Self-healing, Crystalline admixtures, Mechanical properties regain
File in questo prodotto:
File Dimensione Formato  
Framcos 9 Ferrara et al self healing-finalApril 2016.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/991189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact