Ground Source Heat Pumps are energy-efficient HVAC systems usually adopted in residential and commercial buildings. However the control of the thermal environment is required not only in spaces occupied by people, but also in intensive breeding farms, in order to maintain healthy conditions and to increase productivity. In the Italian livestock breedings, heating is usually provided by means of gas or Diesel burners directly installed in the stable. An important part of the heating load is due to the large ventilation rates required for the livestock wellbeing. Cooling is either absent or achieved by evaporative systems that also increase the humidity level in the stables, thus requiring even larger ventilation rates. Therefore the applicability of geothermal heating and cooling in breeding farms was analysed in a research project co-funded by the Lombardy Region and the Italian Ministry of Research and Education. A pilot system for heating, cooling and ventilation was designed and installed in a piglets room at the Experimental and Didactic Zoo-technical Center of the University of Milan. Five Borehole Heat Exchangers (BHEs), installed down to a depth of 60 meters into an alluvial aquifer, were coupled with a Ground Source Heat Pump. The heat pump provides heating and cooling to an Air Handling Unit, including a Heat Recovery system. A monitoring system was installed in order to measure comfort conditions in the piglet room, operating conditions and energy consumption of the HVAC system, together with the spreading of the thermal plume in the ground. In this paper the results of a monitoring campaign carried out in a typical winter period are presented and discussed. The overall energy efficiency of the system, expressed in terms of a COP, results to be equal to 4.04. A comparison between the pilot HVAC system and a traditional one is also carried out, showing that the proposed solution can provide over 40% primary energy saving. Following, cost savings in energy bills for farmers are found, although the ratio between electricity cost and fuel cost is a key parameter.

Zoo-technical application of Ground Source Heat Pumps: a pilot case study

ANGELOTTI, ADRIANA;ALBERTI, LUCA;ANTELMI, MATTEO;
2016-01-01

Abstract

Ground Source Heat Pumps are energy-efficient HVAC systems usually adopted in residential and commercial buildings. However the control of the thermal environment is required not only in spaces occupied by people, but also in intensive breeding farms, in order to maintain healthy conditions and to increase productivity. In the Italian livestock breedings, heating is usually provided by means of gas or Diesel burners directly installed in the stable. An important part of the heating load is due to the large ventilation rates required for the livestock wellbeing. Cooling is either absent or achieved by evaporative systems that also increase the humidity level in the stables, thus requiring even larger ventilation rates. Therefore the applicability of geothermal heating and cooling in breeding farms was analysed in a research project co-funded by the Lombardy Region and the Italian Ministry of Research and Education. A pilot system for heating, cooling and ventilation was designed and installed in a piglets room at the Experimental and Didactic Zoo-technical Center of the University of Milan. Five Borehole Heat Exchangers (BHEs), installed down to a depth of 60 meters into an alluvial aquifer, were coupled with a Ground Source Heat Pump. The heat pump provides heating and cooling to an Air Handling Unit, including a Heat Recovery system. A monitoring system was installed in order to measure comfort conditions in the piglet room, operating conditions and energy consumption of the HVAC system, together with the spreading of the thermal plume in the ground. In this paper the results of a monitoring campaign carried out in a typical winter period are presented and discussed. The overall energy efficiency of the system, expressed in terms of a COP, results to be equal to 4.04. A comparison between the pilot HVAC system and a traditional one is also carried out, showing that the proposed solution can provide over 40% primary energy saving. Following, cost savings in energy bills for farmers are found, although the ratio between electricity cost and fuel cost is a key parameter.
2016
CLIMA 2016 - proceedings of the 12th REHVA World CongressCLIMA 2016: volume 3
87-91606-28-4
Ground source heat pump; heat recovery; comfort; zoo-technical; aquifer.
File in questo prodotto:
File Dimensione Formato  
CLIMA 2016_473_publishers_copy.pdf

accesso aperto

Descrizione: publisher's version
: Publisher’s version
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/990419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact