Large-scale adoption of dense cloud-based wireless network technologies in industrial plants is mandatorily paired with the development of methods and tools for connectivity prediction and deployment validation. Layout design procedures must be able to certify the quality (or reliability) of network information flow in industrial scenarios characterized by harsh propagation environments. In addition, these procedures must account for possibly coexisting heterogeneous radio access technologies as part of the Internet of Things (IoT) paradigm, easily allow post-layout validation steps, and be integrated by industry-standard CAD-based planning systems. The goal of the paper is to set the fundamentals for comprehensive industry-standard methods and procedures supporting plant designer during wireless coverage prediction, virtual network deployment, and post-layout verification. The proposed methods carry out the prediction of radio signal coverage considering typical industrial environments characterized by highly dense building blockage. They also provide a design framework to properly deploy the wireless infrastructure in interference-limited radio access scenarios. In addition, the model can be effectively used to certify the quality of machine-type communication by considering also imperfect descriptions of the network layout. The design procedures are corroborated by experimental measurements in an oil refinery site [modeled by three-dimensional (3-D) CAD] using industry-standard ISA IEC 62734 devices operating at 2.4 GHz. A graph-theoretic approach to node deployment is discussed by focusing on practical case studies, and also by looking at fundamental connectivity properties for random deployments. © 2014 IEEE.

Wireless cloud networks for the factory of things: Connectivity modeling and layout design

SAVAZZI, STEFANO;RAMPA, VITTORIO;SPAGNOLINI, UMBERTO
2014-01-01

Abstract

Large-scale adoption of dense cloud-based wireless network technologies in industrial plants is mandatorily paired with the development of methods and tools for connectivity prediction and deployment validation. Layout design procedures must be able to certify the quality (or reliability) of network information flow in industrial scenarios characterized by harsh propagation environments. In addition, these procedures must account for possibly coexisting heterogeneous radio access technologies as part of the Internet of Things (IoT) paradigm, easily allow post-layout validation steps, and be integrated by industry-standard CAD-based planning systems. The goal of the paper is to set the fundamentals for comprehensive industry-standard methods and procedures supporting plant designer during wireless coverage prediction, virtual network deployment, and post-layout verification. The proposed methods carry out the prediction of radio signal coverage considering typical industrial environments characterized by highly dense building blockage. They also provide a design framework to properly deploy the wireless infrastructure in interference-limited radio access scenarios. In addition, the model can be effectively used to certify the quality of machine-type communication by considering also imperfect descriptions of the network layout. The design procedures are corroborated by experimental measurements in an oil refinery site [modeled by three-dimensional (3-D) CAD] using industry-standard ISA IEC 62734 devices operating at 2.4 GHz. A graph-theoretic approach to node deployment is discussed by focusing on practical case studies, and also by looking at fundamental connectivity properties for random deployments. © 2014 IEEE.
2014
Design; Forecasting; Graph theory; Industrial plants; Internet; Internet of things; Mobile telecommunication systems; Wireless telecommunication systems, Industrial wireless; Internet of Things (IOT); Machine type communications; Network deployment; Radio access technologies; Wireless channel model; Wireless coverage predictions; Wireless network technologies, Computer aided design; Factory-of-Things (FoT); industrial wireless communication; Internet-of-Things (IoT); machine-type connectivity; network deployment optimization; smart-factory; wireless channel modeling
File in questo prodotto:
File Dimensione Formato  
Wireless Cloud Networks for the Factory of Things_11311-988986_Spagnolini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/988986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 53
social impact