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Abstract—Large-scale adoption of dense cloud-based wireless
network technologies in industrial plants is mandatorily paired
with the development of methods and tools for connectivity
prediction and deployment validation. Layout design procedures
must be able to certify the quality (or reliability) of network
information flow in industrial scenarios characterized by harsh
propagation environments. In addition, these must account for
possibly coexisting heterogeneous radio access technologies as
part of the internet of things (IoT) paradigm, easily allow post-
layout validation steps, and be integrated by industry standard
CAD-based planning systems. The goal of the paper is to set
the fundamentals for comprehensive industry-standard methods
and procedures supporting plant designer during wireless cov-
erage prediction, virtual network deployment and post-layout
verification. The proposed methods carry out the prediction of
radio signal coverage considering typical industrial environments
characterized by highly dense building blockage. They also
provide a design framework to properly deploy the wireless
infrastructure in interference-limited radio access scenarios. In
addition, the model can be effectively used to certify the quality
of machine type communication by considering also imperfect
descriptions of the network layout. The design procedures are
corroborated by experimental measurements in an oil refinery
site (modelled by 3D CAD) using industry standard ISA IEC
62734 devices operating at 2.4GHz. A graph-theoretic approach
to node deployment is discussed by focusing on practical case
studies, and also by looking at fundamental connectivity proper-
ties for random deployments.

I. INTRODUCTION

The adoption of wireless communication and sensor net-

works in the industrial context is becoming of strategic

interest for manufacturers and plant designers [1]. As an

example, when increasing the production of existing industrial

plants, wireless systems provides a cost-effective solution to

complement the existing wired network and thus augment

monitoring without the costly (and often unfeasible for logistic

reasons) re-wiring over the existing plants. Compared to wired

systems, wireless technologies have the advantage of low cost,

mobility and energy-efficiency, compactness, and flexibility to
overcome obstacles more easily than existing wired solutions.
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Fig. 1. Industrial wireless sensor network architecture. Field device (FD)
layout over 3D-CAD model of the plant (oil refinery site). Bottom figure:
cloud-based industrial wireless sensor network architecture with Gateways
serving as WiFi enabled cloud access nodes. Short-range machine type wire-
less communication is subject to highly dense buidling blockage (LOS/NLOS
type links).

These benefits come without additional maintenance efforts as

wireless devices have now battery lifetime comparable to the

planned maintenance schedules of wired systems.

Next generation wireless sensor network technologies are

expected to be integrated into the Internet of Things (IoT)

paradigm [2], allowing for the global interconnection of het-

erogeneous smart physical objects with advanced functionali-

ties. Following the paradigm of IoT, emerging technologies in-

side modern factories are evolving to intelligent environments

or “Factory of Things (FoT)” [3], where wireless network

technologies and mobile information access are now playing

a key role for the efficient design of industrial processes.

Cloud-enabled wireless industrial sensor networks [2]-[5] is

an emerging paradigm in machine-type communication: it con-

sists of self-organizing, massively dense air-interacting wire-

less devices (serving as sensors, actuators, relays or distributed

computing nodes) that have the ability to gather and process

pervasive information about the state of the industrial plant,

by enabling early detection and localization [6] of any dan-



gerous situation. Cloud-based sensor networks have recently

attracted the interest of several research fields ranging from

ubiquitous computing, machine learning, information theory

[5], and social networking [7]. Sensor-cloud architectures are

designed to integrate cloud computing functionalities into the

wireless monitoring and control network infrastructure, allow-

ing for pervasive, collective and distributed computation of

data by end-users, supporting different industrial applications

[4]. According to this view, sensor and actuator devices do

not simply serve as possibly faulty end-points but also as

critical computing and storage resources that must be reliably

connected to satisfy tight quality-of-service (QoS) constraints.

Although many technological solutions and standards (e.g.,

WiFi/LTE, IEC standards WirelessHART, ISA100.11a [8])

have been investigated for application-specific contexts, even

if the proposed solutions effectively address consumer needs,

they are not yet ready for cloud-enabled industrial applications

with high safety, reliability, security and real-time require-

ments [3]. This is also due to the limitations of existing

network design procedures that are not suitable to address

network optimization in complex and harsh environments. In

addition, industrial layouts are characterized in many cases by

multiple coexisting heterogeneous networks, as part of the FoT

architecture. Industry-standard design procedures for wireless

cloud network optimization must be therefore able to certify

the reliability and safety of radio links under harsh conditions.

Moreover, these procedures must be supported by various

industrial planning tools [9] (CAD, CAE, CAM) in order to

achieve a seamless planning, design and operation environ-

ment, regardless of the wireless/wired communication technol-

ogy employed. Developing consistent design methodologies

for (possibly heterogeneous) industrial wireless networks is

also becoming mandatory as supporting tool for the technology

suppliers/vendors during every phase of system set-up, pre-

commissioning, integration, and post-layout testing.

Purpose of this paper is to make a first and unique at-

tempt towards the proposal of algorithms and the definition

of industry-compliant tools able to support virtual coverage

prediction, layout design and deployment of industrial wireless

sensor networks for cloud-based applications and decentralized

architectures. Experimental measurements are carried out to

evaluate the effectiveness of the proposed toolkit based on

industry standard devices operating at 2.4GHz. The IEEE

802.15.4 physical (PHY) layer is considered in this paper

being the standard choice for IEC 62591 (WirelessHART) and

IEC 62734 (ISA SP100) compliant wireless field instruments

[8].

A. Wireless Cloud Networks for machine-type communication

The cloud-based FoT network architecture considered in

this paper consists of dense, massively interacting groups of

wireless nodes that cooperate to provide seamless communi-

cation services to user terminals. The architecture is promising

as it can support decentralized consensus-based techniques

for joint estimation of key parameters, digital and analog

network coding [5] in which field devices (FDs), acting as

sensors, actuators or relaying nodes, can forward a jointly

coded combination of incoming data streams, implementing

a virtual multiple antenna system [10]. In order to enable

those advanced functionalities, the physical structure of the

network must be optimized to certify the quality/reliability

of the information flow, and to guarantee fast processing and

convergence of any decentralized task.

The 3D view of the testing site considered as example in

this paper is illustrated in Fig. 1: data originated from wireless

FDs are ‘flooded’ throughout the network toward Gateway

(GW) devices. The GWs have the role of cloud access nodes

(e.g., for fixed/mobile WiFi enabled users), connecting the

FDs to a backbone wired/wireless network (Fieldbus/LTE),

and providing a uniform access interface to devices outside

the cloud.

B. Contributions

Contributions of the paper are summarized as follows.

• A novel stochastic model is proposed to describe short-

range machine-type wireless connectivity in industrial envi-

ronments characterized by highly dense building blockage.

This prediction model is applicable to different industrial

settings and relevant scenarios (where obstructions are fixed

or predictable). It can be effectively used to certify the link

reliability accounting for errors during on-site positioning of

instruments and imperfect/inaccurate description of the 3D

environment that might occur throughout the various industrial

plant design phases. A 3D CAD software tool is used to

identify the structure of the building blockage [11] from which

the reliability of the radio link can be predicted using the

proposed model. Based on well consolidated principles from

propagation and diffraction theory (revised in Sect. 2), the

model allows for the prediction (before on-site deployment) of

the link quality information (LQI) for short-range machine-to-

machine communication based on the positions of the indus-

trial equipment and the configuration of the obstructions (Sect.

3). Model accuracy is validated by measurement campaigns

from large-size oil refinery plants. Post-layout verification is

carried out by exploiting the prediction model along with test

positions verifications.

• FoT enabling wireless cloud technologies are expected

to operate inside the factory over unlicensed 2.4GHz, these

coexist with other devices employing different radio protocols.

The problem of modeling the coexistence between WiFi and

IEEE 802.15.4 networks in critical high traffic load scenarios

is addressed in Sect. 4. Based on several experimental tests,

the impact of different IEEE 802.15.4 PHY configurations,

WiFi traffic loads and interference overlapping on coexistence

are also discussed.

• The design of cloud connectivity (Sect. 5) is discussed

based on a graph-theoretic approach and evaluated by focusing

on practical case studies. The deployment of relays is adopted

to improve the reliability of weakly connected networks char-

acterized by a high percentage of unreliable links. Weakly

connected clusters are identified according to a spectral graph

partitioning method, and relays are planned accordingly. Prac-

tical deployment case studies validate the effectiveness and the

accuracy of the proposed model. To provide a comprehensive



performance evaluation, in Sect. 6 the cloud network is mod-

eled as a random geometric graph, while connectivity, energy

consumption and interference coexistence are analyzed. The

heterogeneity of machine-type links (in terms of configuration

of obstructions) suggests relevant conditions on propagation

for which “small-world” connectivity phenomena [12] emerge,

thus simplifying relay placement and topology control.

II. MODELING OF SHORT-RANGE PROPAGATION

This section introduces the modeling of the short-range

channel, being the first step for the prediction of the wireless

machine-type connectivity and coverage. Although several

models have been proposed in the literature, (e.g., see [13] for

reviewing) these cannot fully capture the unique propagation

characteristics of industrial environments. In addition, most of

conventional ray-tracing tools turn out not to be practical to

process the high number of structures and their complexity

in large industrial sites [14]. This motivates the development

of accurate site-specific channel models based on a set of

measurements taken in typical industrial sites. The proposed

wireless propagation model describes the correlation between

the size and the locations of the objects obstructing the line-

of-sight (LOS) path (or Fresnel volumes) and the reliability of

the wireless link in terms of received signal strength (RSS).

For any link ℓ connecting a pair of FDs at distance d, the RSS

γℓ is modeled as

γℓ = g0(d) · σ−1ℓ� �� �
LQI: gℓ(d)

sℓ + nℓ. (1)

It combines three terms: i) a static component E[γℓ] = gℓ(d)
characterized by a distance dependent (d) LOS term g0(d)
and a link-specific excess attenuation σℓ due to propagating

wavefronts diffracting around the building blockage; ii) a

dynamic random component sℓ due to moving people [6] or

field equipment, typically modeled by Rician distribution [13]

with E[sℓ] = 1; iii) random disturbance nℓ due to noise and co-

channel interference with power E[nℓ] = µℓ. In what follows,

we focus on modeling of the static component gℓ(d) being

a practical indicator of link quality, also referred to as LQI

[15]. The impact of dynamic component sℓ and disturbance

nℓ in heterogeneous network scenarios are assessed in Sect. 4

according to experiments in real environments.

As typically assumed in recent standardization bodies such

as ITU [13], the distance-dependent static component g0(d)
provides a description of the radio signals reflecting from the

(flat) terrain, while in short-range propagation1, the obstruction

σℓ caused by building blockage acts as an additive (in dB

scale) and independent term. The term g0(d) can be described

in terms of the Fresnel distance dF :

[g0(d)]dB =

�
[g0(d0)]dB − α0 × [d/d0]dB d ≤ dF

[g0(dF )]dB − αF × [d/dF ]dB, d > dF
(2)

where the operator [·]dB = 10 log10(·) indicates dB scale

conversion. The component is modeled as a function of the

path-loss exponents α0, αF (see [13]) for d ≤ dF and d >

1below 500m in outdoor environments (typical for micro-cells).
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Fig. 2. Knife-edge diffraction model for random surface

dF , respectively, while g0(d0) is the free space channel gain

measured at a reference distance (here d0 = 2m). The Fresnel

distance dF = 2hRhT /λ depends on the wavelength λ and on

the antennas height from the ground of the transmitter hT and

the receiver hR. The path loss exponent can be reasonably

set to α0 = 2 for d ≤ dF in short range environments

where ground reflections can be neglected. Larger exponents

αF > α0 (with typically 2 ≤ αF ≤ 3) are caused by

reflections from the ground and are observed over longer range

for d > dF .

Diffraction theory provides an effective tool for modeling

the signal power excess attenuation σℓ as due to objects

obstructing the Fresnel zones [16] and absorbing fractions of

the propagating energy of the wavefield. The mathematical

framework instrumental to the evaluation of diffraction loss

σℓ for a given configuration of the obstruction is reviewed in

Sect. 2.A.

A. Modeling of attenuation constrained by building blockage

Herein, we model the additional attenuation σℓ in (1) as

due to obstacles acting as perfectly absorbing interfaces. The

model for the prediction of the building blockage term σℓ
is based on the Fresnel-Kirchhoff method. The Huygen’s

principle for propagating wavefield [16] is used to predict the

actual field strength diffracted by obstacles modeled as knife-

edge objects. In spite of the simplicity of this method, in Sect.

3-4 it is shown to be accurate enough for wireless link quality

prediction. The attenuation σℓ (1) is inferred from the received

electric field as

σℓ = |E0/E1|2 , (3)

where the ratio E0/E1 describes the obstruction loss in excess

with respect to the free space electric field E0 (without

obstructions). The electric field E1 at the receiver can be

interpreted as generated by a virtual array of Huygens’ sources

located in the target plane. Large-size metallic objects ob-

structing the wireless link absorb a large amount of the signal

intensity and limit the received field to a small fraction of

the one that would be observed under free-space propagation

(being |E1/E0| ≪ 1).

According to the simplified description of the layout ge-

ometry illustrated in Fig. 2, the radio link is characterized



by a transmitter placed for convenience in the origin O of

the axes (x1, x2, x3) and the receiver at distance d with

coordinates xr = [d, 0, 0]. The single obstruction is modeled

as a knife-edge 2D object in the (x2, x3) plane with size

described by vector ∆xo and barycenter located at coordinates

xo = [xo, yo, 0] in the surroundings of the direct LOS path

(i.e., at distance yo > 0 from the LOS). The object occupies

an obstructing surface (x2, x3) ∈ S(xr,xo;∆xo). The field

intensity E1 at the receiver can be written in general as

E1(xr,xo;∆xo) = E0 −
�
(x2,x3)∈S(xr,xo;∆xo)

dE (4)

where dE is the electric field that is subtracted due to

diffraction effects and caused by the elementary Huygen’

source over the area dx2dx3. The model (4) for a single

obstacle can be recursively applied and extended to multiple

obstacles by following the Deygout approach (see [11] for

details). Considering antennas with omnidirectional pattern

at both sides, and since the object responsible for the most

significant attenuation can be reasonably assumed as located

in the surroundings of the direct path, the electric field dE
can be approximated [17] for x2, x3, λ≪ xo, xr − xo as

dE =
1

r21(xr,xo)
jE0 exp

�
−jπ x22 + x23

r21(xr,xo)

�
dx2dx3 (5)

with r1(xr,xo) =
	
λxo(d− xo)× d−1 being the radius of

the first Fresnel’s zone circular section [16] corresponding

to the location of the obstruction (at distance xo from the

transmitter). The solution of (4) is obtained by numerical

integration for arbitrary complex obstructing surfaces S. Ap-

proximated solutions are also available in some simplified

settings, see [17] and [11].

B. Diffraction loss from 2D rectangular obstructions (2.4GHz)

To gain further insight into the relationship between the

obstruction size and the corresponding field loss, in Fig. 3-

(a) we focus on a reference scenario (considered also in

Sect. 3) where the obstruction is characterized by a knife-

edge object with rectangular cross-section having ∆xo =
(0,∆xo,∆yo), lateral half-dimension ∆xo and unbounded

vertical half-dimension (∆yo → ∞) sometimes referred to

as 2.5D obstacle2. In the reference example, the object is

located halfway at distance xo = d/2 from the transmitter

and at distance yo from the direct path. The excess attenuation

σℓ (in dB scale) due to diffraction is evaluated in Fig. 3-(b)

for varying lateral size ∆xo = 0 ÷ 3r1 and object positions

yo = 0 ± 3r1 to model arbitrary obstruction configurations.

As an example, a wireless link of distance d = 30m,

with λ = 0.12m (2.4GHz ISM Band) and equipped with

omnidirectional antennas) would experience a Fresnel radius

of r1 = 1.4m, while the rectangular obstruction located at

xo = 15m from the transmitter has horizontal half-dimension

∆xo < 3 × r1 = 4.2m. Three relevant reference obstruc-

tion configurations can be highlighted: i) the unobstructed

direct LOS path (i.e., for ∆xo < yo) with corresponding

2Vertical half-dimension can be assumed in practice as reasonably high
∆yo ≫ r1 to model typical obstructions caused by large equipment units
and buildings
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Fig. 3. Knife-edge diffraction model for rectangular (vertical unbounded)
surface (a). Diffraction loss for varying position (yo) and object half–
dimension (∆xo) scaled w.r.t. the Fresnel radius r1 (b).

excess attenuation σℓ < 5dB; ii) the partially obstructed (for

∆xo ≃ yo) case with attenuations mostly confined in the

region 5dB < σℓ < 10dB and iii) the fully obstructed (for

∆xo > yo) with σℓ > 10dB. The dashed line of Fig. 3-(b)

separates the lower LOS regions from the upper NLOS ones.

III. STOCHASTIC MODELING OF MACHINE-TYPE

CONNECTIVITY

Industry standard applications demand for accurate predic-

tion of the network connectivity among different machines

and instruments that must be available to designers during

every phase of the plant set-up. Therefore the model should be

robust enough to address imperfect or inaccurate descriptions

of the 3D model layout (e.g., accounting for mismatches

between the simulated 3D model and the actual size, position

and configuration of the field equipment). Similarly, small

positioning errors of wireless instruments with respect to the

simulated deployment should be also accounted for during

network performance validation and stress-testing. This mo-

tivates the adoption of a stochastic model for the description

of the LQI gℓ(d) (1) as being instrumental to link quality

certification and virtual deployment. Focus of this section is

on the diffraction loss σℓ (3) that, as highlighted in Sect. 2.B, is

highly sensitive to varying configurations of the obstructions.

The impact on loss g0 of imperfect positioning (2) is less

relevant as confirmed by experiments (Sect. 3.B).

The proposed approach is based on the classification of

the propagation into a set of C mutually exclusive link

types {C1, C2, ..., CC} where each category describes a specific

configuration of the building blockage and maps to a “type-

specific” probability loss function Pr(σℓ|ℓ ∈ Cj). Any link



ℓ ∈ Cj classified as type j is characterized by an excess

attenuation

[σℓ]dB = σ̄j +wj (6)

modeled as a log-normal random variable with σ̄j being a con-

stant term measuring the reference loss (in dB scale) for type

Cj and wj ∼ N (0,∆σ2j) acting as superimposed zero-mean

random fluctuations with standard deviation ∆σj =std[σℓ|ℓ ∈
Cj ]. Disturbance wj models the type-specific variations of the

diffraction loss accounting for imperfect (i.e., unknown) layout

and positioning.

In Sect. 3.A, the model parameters in (6) are at first

evaluated numerically by solving the corresponding Fresnel

integrals (4) for the obstruction configurations of each cat-

egory, then the analytically derived parameters are validated

by experiments in Sect 3.B. As described in Sect. 2.B, we

consider a single obstructing interface located at position xo
and modeled as a rectangular knife-edge (vertical unbounded)

surface with horizontal half-dimension ∆xo and distance yo
from the direct path. The reference loss σ̄j = E[σℓ|ℓ ∈ Cj ]
for type Cj is

σ̄j = E[xr,xo;∆xo]∈Cj


����
E0

E1(xr,xo;∆xo)

����
2
�

dB

, (7)

where E[xr,xo;∆xo]∈Cj [f(xr,xo;∆xo)]dB denotes the aver-

age of [f(·)]dB with respect to the sampled configurations

of obstructions (namely the position of the object xo, the

receiver xr and the obstruction lateral half-dimension ∆xo)
characterizing the link type as [xr,xo;∆xo] ∈ Cj . The

term σ̄j can be reasonably adopted as the minimum mean

square error (MMSE) predictor σ̂ℓ|dB = σ̄j for the nom-

inal excess attenuation characterizing class Cj . The stan-

dard deviation term with corresponding definition ∆σj =
std[xr,xo;∆xo]∈Cj [|E0/E1(xr,xo;∆xo)|2]dB describes the ex-

pected fluctuations of diffraction loss around the reference σ̄j
for class Cj and thus certifies the criticality level of type Cj
due to imperfect network layout.

A. LOS and non-LOS Link Types

From the analysis of the regions shown in Fig. 3, the

proposed link types prove to fall into two macro-categories:

LOS type links (the direct path and the first Fresnel region

are partially unobstructed) and non-LOS (NLOS) type links

(the same region is now fully obstructed). The stochastic

parameters characterizing each link type (namely, the reference

attenuation σ̄j (7), standard deviation ∆σj and expected

range) are evaluated numerically for sample cases of all types

and summarized in Table I.

In Fig. 4 and 5, illustrative examples of typical LOS and

NLOS type links are provided by highlighting a reference

obstruction scenario for each case, respectively. The corre-

sponding histograms and probability density functions (pdfs)

Pr(σℓ|ℓ ∈ Cj) for sample obstruction configurations are also

reported in the same Figs (on the right). The histograms

(solid lines) are computed by numerical integration of Fresnel

integrals (4) for each type and obtained by: i) altering the

nominal position of the RX node xr over a uniform grid
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Fig. 4. From left to right. LOS link types C1,C2, C3 for rectangular vertical
unbounded obstruction. Corresponding probabilities Pr[σℓ|ℓ ∈ Cj ] for vary-
ing xr ,xo,∆xo uniformly within the range (solid line) and superimposed
log-normal model (6) (dashed lines).

Type 1 links (LOS)

E[σ|ℓ ∈ Cj ] std[σ|ℓ ∈ Cj ] Max. Range rj
Type 1.A (C1) σ̄1 = 0.5dB ∆σ1 = 0.7dB r1 = 150m
Type 1.B (C2) σ̄2 = 3.5dB ∆σ2 = 1.7dB r2 = 108m
Type 1.C (C3) σ̄3 = 6.2dB ∆σ3 = 3.7dB r3 = 60m

Type 2 links (NLOS)

Type 2.A (C4) σ̄4 = 13.5dB ∆σ4 = 5.7dB r4 = 32m
Type 2.B (C5) σ̄5 = 21dB ∆σ5 = 5.8dB r5 = 15m

TABLE I

PARAMETERS FOR (TYPE 1) AND (TYPE 2) MACHINE-TYPE LINKS.

xr ∈ X of spacing 0.1m and size 0.5r1 for all the scenarios;

ii) varying the configuration of obstruction considering a

reference rectangular knife-edge surface and accounting for

imperfect obstruction layouts (i.e., by uniformly varying the

horizontal half-dimension ∆xo and the distance yo from the

LOS according to the chosen link type). Log-normal pdfs

having the same parameters σ̄ℓ and ∆σℓ of the links ℓ ∈ Cj
(6) (dashed lines) are also depicted for direct comparison.

LOS machine-type links are characterized by objects that

partially obstruct the 1st Fresnel region (and the direct path).

The links are described by the following classes.

Type 1.A: LOS (C1) link-type is characterized by the lack of

obstacles (with dimensions larger than the signal wavelength

λ) within the 1st (and 2nd) Fresnel volume, while obstacles

could instead occupy the remaining volumes. Considering the

reference rectangular knife-edge surface example in Fig. 4, the

obstruction configurations corresponding to Type 1.A links are

thus characterized by C1:={yo > ∆xo + r1; xr ∈ X}.

Type 1.B: near-LOS (C2) link-type is observed in environ-
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Fig. 6. Validation of machine-type stochastic connectivity model with experimental data (dots) in oil refinery sites over two interference-free IEEE 802.15.4
2.4GHz channels (15 and 23). Examples of deployment testing from the 3D CAD (ref. by position index) are illustrated for each class (top-figures).
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Fig. 5. NLOS link types C4,C5 with corresponding parameters as in Fig. 3.

ments where the obstacles are located in the 1st Fresnel outer

region at distance 0.6× r1 from the direct path. This ‘forbid-

den’ region is used here as a criterion to decide whether an

object is to be treated as a relevant obstruction. Considering the

reference example in Fig. 4, Type 1.B links are characterized

by C2:={∆xo + 0.6r1 < yo ≤ ∆xo + r1; xr ∈ X}.
Type 1.C: obstructed-LOS (C3) link-type is observed

in environments where the obstacles are located inside

the forbidden region, although the direct path connecting

the transmitter and the receiver is still unobstructed. The

reference obstruction configurations are thus characterized

by C3:={∆xo < yo ≤ ∆xo + 0.6r1; xr ∈ X}. Compared to

LOS types 1.A and 1.B, model inaccuracies might cause

the diffraction loss to experience two-times larger deviations

from the corresponding reference value of σ̄3 = 6.2dB as

∆σ3 = 3.7dB.

NLOS machine-type links are characterized by objects now

obstructing the direct path. For all cases, the analysis high-

lights possibly larger fluctuations wj (6) from the observed

reference losses σ̄j , compared to LOS types, with standard

deviation now ∆σj = 5 ÷ 6dB. The following link types

are therefore deployment-critical and should be carefully ad-

dressed during network layout design (see Sect. 5-6).

Type 2 A: NLOS (C4) link-type is characterized by objects

obstructing the 1st Fresnel region, but leaving the remain-

ing higher-order Fresnel regions mostly free from obstacles.

As illustrated in Fig. 5, the corresponding configurations of

the obstruction are C4:={∆xo − r2 < yo ≤ ∆xo; xr ∈ X},
where r2 = r1

√
2 is the radius of the 2nd Fresnel region.

Type 2.B severe-NLOS (C5) link-type refers to a severe

NLOS environment where the 1st and the 2nd Fresnel regions

are completely obstructed by one or more obstacles with

significant size (and dimensions scaling as ∼ 4 ÷ 5r1).

The corresponding configurations of the obstruction are thus

characterized by C5:={yo ≤ ∆xo − r2; xr ∈ X}.

B. Model validation and measurements campaigns

In this section, the proposed model is validated according

to a database of radio measurements taken in different refinery

sites. In the proposed set-up, we deployed absolute and gauge

pressure ISA IEC62734 [8] compliant FDs communicating

directly with a single GW node connected to a Fieldbus

backbone network. Omnidirectional antennas are employed

for both FD and GW nodes. The experiments have been

carried out in three sites (see the illustrative examples in

Fig. 6) within the same oil refinery [11]: the first site is a

100m×200m area around a flare unit, the second one is a

60m×30m area surrounding a furnace structure, while the last

one is a 120m×45m cooling unit building area. All scenarios

under consideration cover most of the representative link

types identified in Sect. 3.A and are characterized by metallic

objects and concrete buildings with high reflectivity surfaces.



Before the tests, we used a signal analyzer to characterize the

interferers in the area (in terms of received power and occupied

bandwidth). In these tests no relevant activity was detected so

that the contribution of interference nℓ (1) captured by the

receiver can be neglected. Two IEEE 802.15.4 channels are

selected for the experiments with center frequencies 2.405

GHz and 2.480 GHz, corresponding to the IEEE 802.15.4

channel numbers 15 and 23, respectively.

We adopt the model (6) for the prediction of the LQI

[ĝℓ]dB = [g0(d)]dB − σ̄ℓ. (8)

Predictions are compared with corresponding RSS measure-

ments γℓ capturing also the effect of dynamic component sℓ
and disturbance nℓ. The parameters characterizing the distance

dependent component [g0]dB in (2), namely (hR, h T , d), are

obtained from 3D CAD models of the structures. The free-

space channel gain g0(d0) = −47dBm for d0 = 2m is used

to set the reference level. The measured path loss exponents for

a typical case of dF ≃ 50m (GW at hT = 6m above ground,

FDs at ground level) are α0 = 2 and αF = 2.5, respectively.

The selection of link type Cj , and thus of the reference

loss σ̄j (7), is based on the geometrical information extracted

from 3D CAD databases by considering only obstacles with

size comparable to λ. The interface to the existing planning

is implemented by CAD software, classification is based on

inspection of the corresponding 3D environment. Before link

classification, data-base simplification should be applied to

automatically (or manually in some cases) remove objects

not relevant as 2D surfaces or 3D polygons with size smaller

than the wavelength λ as practically irrelevant for propagation

impact. For a selected link (identified by the coordinates of

the node pair) we generate a beam of rays that uniformly span

the first and second Fresnel region around the transmitter and

the receiver. The spacing among rays (offset) is comparable

to the wavelength λ. The obstruction area is thus identified

by collecting and reporting the positions of the intersections

(or clash points) between the rays and the possible 3D solid

obstruction(s) located in-between the coordinates of nodes.

The link type is chosen from the identified classes in Sect.

3.A as the one that best matches the observed obstruction area.

Notice that in more simple LOS or OLOS settings, the number

of probing rays can be reduced based on an preliminary

inspection (e.g., visual) of the 3D CAD.

In Fig. 6 the measurements (empty dots) of RSS are

grouped by link type and compared with the predicted LQI

values (solid lines). The dashed lines indicate the confidence

interval (±∆σ range) for each class. Prediction errors are

caused by three main factors: i) modeling mismatches or

link classification errors due to meaningful layout inaccuracies

and mismatches between the 3D model (e.g., after database

simplification) and the real environment; ii) RSS fluctuations

due to electromagnetic interference3 over the 2.4GHz band

or HW errors due to varying temperature and environmental

conditions; iii) fading induced by objects or people moving

(mostly temporarily) in the area [6]. The comparison highlights

3Caused by special instruments and industrial machines (e.g., induction
furnaces).

the accuracy of the proposed approach. Prediction of LQI

ĝℓ (8) is reasonably tight for LOS types (with errors below

2÷3dB) while smaller accuracy (approx. 5dB) is observed for

NLOS types, as expected from the log-normal model (6). In

the same Fig. 6 (see corresponding figures at bottom) modeling

of loss fluctuations wj ∼ N (0,∆σ2j) is also validated for each

class. As expected, compared to LOS types, larger deviations

∆σj are observed for NLOS and increase with the size of the

obstructed region.

Excluding measurement errors due to the RF devices them-

selves (i.e., accuracy in the order of +/- 1dB), RSS mea-

surements are very stable over time while fluctuations are

mainly due to environmental effects (e.g., temperature) and

fading caused by moving objects or people (e.g., operators)

in the network area. The optimization of network deployment

introduced in Sect. 5 is performed in order to exploit spatial

redundancy and thus avoiding these temporary RSS fluctua-

tions. Of course, if these fluctuations are due to permanent

plant changes (e.g., for expansions of existing sites), then a

post-layout verification step is mandatory.

The previous considerations about LQI predictions apply

to omnidirectional antennas. However, in the general case,

the specific radiation pattern of the node antennas must be

included. This implies that an additional attenuation term

must be included in eq. (8). The antenna radiation pattern

is an additional degree of freedom that can be exploited in

the deployment phase (e.g., to attenuate spatially localized

interferences).

C. Post-layout verification

Before the plant start up, post-layout verification should be

performed to certify the deployments of nodes by acquiring a

complete set of radio measurements within the plant site and

by verifying each link. One or more errors found in this phase

require additional nodes placement (or repositioning of ex-

isting nodes) followed by additional radio link measurements

and validation steps, thus slowing down the plant activation

and adding extra costs. Moreover, inaccuracies during the

radio planning design phase will therefore turn into issues

during the commissioning phase of the plant. To avoid or

at least mitigate these problems, the proposed machine-type

link model provides the ability to capture pre-deployment

information about those links that could require some re-

planning (namely NLOS types). An example of post-layout

verification is performed on a set of measurements not used

for model validation and it is described in Sect. 5.B.

IV. COEXISTENCE WITH WIFI NETWORKS

It is envisioned that most of FoT related wireless technolo-

gies will coexist over the same spectrum with other devices

employing different radio protocols. This is particularly true

for the popular WiFi and IEEE 802.15.4 based standards

operating in the same unlicensed 2400 − 2490MHz ISM

band. The possibility to exploit multiple and heterogeneous

network technologies deployed in close proximity (i.e., for

monitoring/controlling the same industrial process [8]) pro-

vides an attractive opportunity for efficient resource sharing
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Fig. 7. Heterogeneous WiFi-IEEE 802.15.4 network scenario: a portable
WiFi-enabled device is communicating with GW2 by WiFi Direct. Interfer-
ence (with varying power µℓ and SIR, see two examples) is measured at GW1
by the spectrum analyzer. The IEEE 802.15.4 GW1 receiver is thus suffering
as victim of WiFi interference.

and traffic off-loading. However, the practical deployment of

heterogeneous radio technologies still needs to face some

critical issues and design challenges such as the development

of an efficient regulatory framework that preserves Quality

of Service (QoS) by interference coordination and network

design mechanisms to ensure that the mutual interference is

kept below acceptable limits.

So far we illustrated a model for prediction of LQI gℓ.
However, the LQI metric is not enough to estimate the av-

erage successful connection probability PS in the presence of

interference [18]. Fig. 7 illustrates the problem of coexistence

of 2.4GHz machine-type communications conforming to IEEE

802.15.4 and WiFi standards. In particular, we focus on the

relevant case (in terms of QoS [22]) of IEEE 802.15.4 devices

suffering as victims of one WiFi mobile devices sending data

to a GW acting as a cloud access node. The traffic load

of the interference µℓ is modeled as Bernoulli process with

probability 0 ≤ Pµℓ ≤ 1 accounting for the degree of frame

collisions. In what follows, the successful probability PS is

defined as a function of pre-deployment information. It thus

accounts for layout inaccuracies where the obstruction loss σℓ
is modeled as lognormal random variable as shown in Sect.

3; in addition it also considers the interference originated by

WiFi with power µℓ and probability Pµℓ . For any link ℓ ∈ Cj ,
the Signal to Interference Ratio SIRℓ = gℓ/µℓ serves as an

additional metric to LQI for successful connection probability

PS = PS(Cj) assessment:

PS=

�
Pr[gℓ>β] = Ψ(β|Cj), if µℓ <

β
βI

Pµℓ Pr[SIRℓ>βI ]+(1−Pµℓ)Pr[gℓ>β], if µℓ≥ β
βI

(9)

where model for LQI gℓ is based on (1) with σℓ in (6), while

Ψ(x|Cj) = erf



x−1g0(d)

�
dB
− σ̄j

∆σj

�

(10)

depends on link type Cj and erf [·] is the error function.

Similarly, the probability term is defined as Pr[SIRℓ > βI ] =
Ψ(βIµℓ|Cj) with Ψ(x|Cj) in (10). The ratio β/βI indicates the

critical value of co-channel disturbance µℓ captured by the re-

ceiver above which interference (SIR and collision probability

Pµℓ) has a relevant impact on connectivity. The RSS threshold

β = −85dBm [15] depends on receiver sensitivity and limits

the performance in interference-free scenarios. Sensitivity β
also depends on IEEE 802.15.4 PHY data-rate settings as

described in Sect. 4.

As experimentally verified in Sect. 4.A, the threshold βI =
βI(η) (or link margin) critically depends on the degree of

spectrum overlapping η ∈ [0, 1] between the useful signal and

the co-channel WiFi disturbance. Overlapping is defined in

terms of the amount of interference power as η × µℓ lying

over the considered IEEE 802.15.4 channel: this is obtained

by considering only the portion of WiFi spectrum in common

with the IEEE 802.15.4 signal. In what follows, the threshold

βI(η) is evaluated experimentally for the relevant case (in

the industrial context) of IEEE 802.15.4 devices acting as

victims of WiFi IEEE 802.11g interference and subject to

full (η ≥ 0.5) or partial (η < 0.5) spectrum overlapping. In



particular, the settings consider critical (or worst-case) high

traffic load scenarios where both WiFi and IEEE 802.15.4

networks are possibly continuously transmitting. i.e. to comply

with safety-critical industry-standard applications. Other inter-

ference coexistence scenarios are considered and analyzed in

[18]-[19]. Below, the impact of enhanced IEEE 802.15.4 PHY

data-rate transmission mode is also discussed. The topic is

relevant as enhanced data-rate mode is supported by recent

HW designs [20] to comply with delay-sensitive applications.

A. IEEE 802.15.4 and WiFi coexistence for high traffic loads

The coexistence among IEEE 802.15.4 devices sharing the

spectrum with WiFi-enabled devices is analyzed by experi-

ments, in accordance with a set of pre-defined conditions on

LQI, spectrum overlapping and WiFi traffic load responsible

for frame collisions. The set-up is depicted in Fig. 7. It

consists of one IEEE 802.15.4 device that transmits full data

frames of 127 bytes towards a GW labeled as node 1 (GW1).

GW nodes support double radio technology with WiFi and

IEEE 802.15.4. The transmitter is a programmable device

configured to switch among 7 consecutive channels having

bandwidth 5MHz (with center frequencies [18] ranging from

2405MHz to 2435MHz). It sends data in continuous mode4 by

disabling carrier sense multiple access (CSMA) to conform

with industry standard PHY [8] and implement a direct-

sequence spread spectrum (DSSS) with factor (Q1 = 8), and

data-rate of 250kbps. The GW receiver 1 might be affected by

a disturbance (co-channel interference) originated by a WiFi

enabled portable Android device communicating in peer-to-

peer (P2P) mode with GW node 2 (GW2) through WiFi-Direct

[23] (over IEEE 802.11g) using the band 2400 − 2420MHz.

These interference scenarios are characterized by varying

powers µℓ, collision probability Pµℓ and spectrum overlapping

η, both measured by a 2.4GHz spectrum analyzer.

In Fig.8-(a) we analyze the successful connection probabil-

ity PS for varying SIR (9) assuming full overlapping η ≥ 0.5
(channels 11−14) and continuous WiFi traffic, with high load

as Pµℓ ≃ 1. Successful probability is obtained by counting the

number of successfully acknowledged data frames normalized

by the number of frames received with interferer disabled.

According to model (9), the optimal threshold βI can be

reasonably set to βI = 15dB. As confirmed from (11), the

use of channels experiencing η ≥ 0.5 must be avoided by

blacklisting (when possible) for SIRℓ < 15dB. In the same

Fig. 7-(a), probability PS is also evaluated over 7 consecutive

channels to highlight the impact of spectrum overlapping and

interference traffic loads. The analysis focuses on the extreme

cases of full overlapping with η ≃ 1 (channels 11 − 13) and

η ≃ 0.5 (channel 14), and partial overlapping with η < 0.1
(channels 15−17), being the most meaningful cases observed

in the tests. For partial overlapping, disturbance is now due

to out-of-band spurious emissions of WiFi devices. We also

consider WiFi Direct P2P group formation [23] (in dashed

lines), with collision probability Pµℓ ≃ 0.1 and continuous

WiFi traffic (in solid lines), with Pµℓ ≃ 1. The use of

partially overlapped channels (15 − 17) might be tolerated

4with ack. and beacon frame options enabled (beacon order 4).

without significant penalties even at low SIR regime (when

SIRℓ > −6dB). A reasonable approximation to threshold

values (in dB scale) for SIR in (9) is found as

βI(η,Q1 = 8) ≃
�

15dB for η ≥ 0.5 (ch. 11− 14)

−6dB for η < 0.5 (ch. 15− 17)
,

(11)

these can be used for connectivity prediction (see Sect. 6).

B. Enhanced IEEE 802.15.4 PHY data-rate

In this section we investigate the use of high-data rate mode

as available in recent low-power IEEE 802.15.4 compliant

transceiver devices [20]. The use of the enhanced data-rate

mode can be a promising option for fast servicing of unex-

pected conditions that require a fast reaction over the network

in a low-latency mode and a meaningful increase of the sensor

data publishing rate [21]. In Fig. 8-(b), the coexistence with

WiFi is addressed for the same settings, now by programming

the FDs to reduce the IEEE 802.15.4 DSSS factor (for payload

transmission) down to a value of Q2 = 2, corresponding to a

PHY data rate of 1Mbps. According to our experiments, the

IEEE 802.15.4 data frame transmission duration reduces from

4ms down to 1.6ms (for a payload of 102 bytes), at the cost

of a slightly lower interference-free sensitivity β ≃ −82dBm,

compared to the standard data-rate case. Given that the IEEE

802.15.4 transceiver is continuously transmitting, the observed

collision probability Pµℓ during P2P WiFi group formation is

marginally influenced by the reduced transmission duration

(and still Pµℓ ≃ 0.1). The optimal SIR threshold is now

βI = βI(η,Q2 = 2) ≃ 21dB, and therefore can be reasonably

modeled as a linear function of (11)

βI(η,Q2 = 2) ≃ βI(η,Q1) + [Q1/Q2]dB, (12)

as increasing with the ratio of spreading factors [Q1/Q2]dB =
6dB to account for the larger interference capturing effect.

V. GRAPH THEORETIC DESIGN OF CLOUD-BASED SENSOR

NETWORKS

The simulation and layout design tool supporting cloud

connectivity optimization is fairly general and applicable in

different industrial scenarios. The tool assigns the nominal

positions of nodes and link types obtained from 3D CAD

analysis. A virtual representation of the deployed instrument

is obtained by modeling the layout inaccuracies and imper-

fect positioning responsible for log-normal deviations of the

obstruction loss from the reference term σ̄j (6).

Graph theory is the natural framework for the exact mathe-

matical modeling of complex network structures [12] charac-

terized by dense interconnected objects. In what follows, the

industrial network is modeled by an undirected geometrical

graph G(N ,V) consisting of a set N = {1, 2, ...N} of N
vertices identifying the position of the FDs and of the GWs

deployed in an arbitrary industrial site. The elements of V are

the links ℓ connecting pairs of elements in N . FDs connect

to each other probabilistically, depending on their link type:

connectivity for link ℓ among two devices (a, b) ∈ N is

simulated by: i) assigning a class ℓ ∈ Cj and the obstruction

loss σℓ in (6) according to the corresponding 3D model of



the plant (see Sect. 3); ii) configuring the binary symmetric

adjacency matrix [12] C(G) with [C(G)]a,b = ca,b, null

elements along the main diagonal and Pr[ca,b = 1] = PS .

Probability PS = PS(Cj) depends on class Cj and it is given

by model (9).

The proposed network layout optimization consists of four

phases:

Network structure identification. The modular structure

of the network is analyzed to identify potential weaknesses

of the layout. A spectral graph partitioning method [12] is

used to identify possibly disconnected or weakly connected

network structures over the deployment G. Weakly connected

networks are defined in general as groups (or clusters) of

wireless devices such that there is a higher density of links

within groups than between them. A cluster of G is thus a

subset of N that is richly intra-connected (cohesive group)

but sparsely connected with the remaining vertices of the

graph. Weakly connected groups can be considered as the

bottleneck of the cloud system and potentially critical in case

of layout inaccuracies or interference. The cohesive groups

can be identified by analyzing the eigenvalues and eigenvector

pairs (λi, vi) of the Laplacian matrix [24]

L(G) = K(G)−C(G) (13)

of graph G where K(G) = diag(k1, ..., ka, ..., kN) and

ka =
�N
b=1 ca,b (14)

is the degree of the device a. Being for Laplacian matrices

λ1 = 0, the N length eigenvector components v2, ...,vQ+1
corresponding to the Q consecutive Laplacian eigenvalues

λ2, ..., λQ+1 lying in a small gap away from zero provide

a virtual representation of Q + 1 weakly connected FDs

sub-networks characterized by dense connectivity within each

group [24]. Graph partitioning can be improved using several

refinement techniques [25]. An effective method is to look for

the links in the network that are responsible for connecting

many pairs of devices (e.g., by shortest path) and assigning

them an high cost metric (“betweenness” [26]). Network

components emerge by removing progressively the links with

the largest betweenness: these links are thus critical for relay

deployment.

Relay assignment for topology control. The physical struc-

ture of the network in terms of node adjacencies is designed for

connectivity and topology control. The proposed deployment

algorithm iteratively adds new relay nodes among M candidate

positions (namely identified during pre-commissioning of the

plant) to guarantee robust connectivity, therefore by increasing

the number of edges running between weakly connected

clusters (namely the cut size). The method can be configured

to implement several metrics for optimal relay placement (see

[27] for a survey). Based on the model of Sect. 3, a reasonable

strategy adopted here is to deploy new relays i) to strengthen

connectivity of weakly connected groups using the algebraic

connectivity [28] as performance metric (see the following

section) and ii) to minimize the use of critical NLOS type links

(Type 2), being highly sensitive to 3D model inaccuracies and

interference. When R ≤M relay nodes are added, they form a

new “augmented” graph G(R) while the relay placement stops

when the algebraic connectivity, corresponding to graph G(R)
satisfies a target value ξ.

Interference stress-testing. The connectivity performance

is finally tested under a simulated WiFi shared access scenario.

Stress-testing of connectivity is thus implemented to determine

the safe usage limits of the chosen layout in interference-

limited environments characterized by the tuple
�
Pµℓ , µℓ, η

�

according to (9).

Post-layout verification. Finally, the node set that imple-

ments the proposed connectivity graph is deployed in the

real plant and its performance is verified by measurements.

Although not explicitly addressed in this paper, post-layout

verification is an iterative step where connectivity errors,

if found, are identified and the initial nodes deployment is

modified focusing on the sub-graphs that do not fulfill the

post-deployment testing. As illustrated in the case study of

Sect. 5.B, the layout verification confirms the effectiveness

of the predicted deployment without the need of additional

iterations. In general, the accuracy of the model (see Sect. 3.B)

is enough to provide a meaningful reduction of the iterations

needed during the on-site network set-up.

A. Performance metrics

Different approaches to relay deployment for topology

control will produce different network designs: it is therefore

useful to provide key metrics to assess the usefulness of a

network structure as the output of the chosen optimization

parameters.

Algebraic connectivity. Algebraic connectivity [28] pro-

vides a powerful metric to assess the quality of information

flow inside the cloud network and the connectivity robustness.

The algebraic connectivity λ2 is defined as the second smallest

eigenvalue of the Laplacian (13) L(G) of graph G. Let the

information load exchanged by any cloud node pair (a, b)
at time t be xa(t) and xb(t), respectively. Assuming that

the information flow inside the cloud is modeled by linear

consensus [29]

dxa(t)

dt
=
�

b�=a

ca,b [xb(t)− xa(t)] (15)

then the connectivity ca,b acts as a weighting factor for

the information exchange between node a and b. For large

consensus time, the solution of eq. (15) is ruled by algebraic

connectivity as xa(t) ∼ x̄ + β exp(−λ2t) ∀a , where x̄ is

the consensus (average) state and λ2 the algebraic connectiv-

ity. Therefore, the bigger λ2, the faster x(t) diffuses to its

consensus state. In this sense, it is reasonable to optimize

the network structure by defining a relay placement stopping

criteria ruled by algebraic connectivity. On every new deployed

relay, the algebraic connectivity of the relay-augmented graph

G(R) is computed as λ2[G(R)] while the relay placement stops

when λ2 > ξ, with ξ indicating a critical convergence time of

the information flow inside the network. The above condition

also ensures that the network connectivity can tolerate up to

a maximum of ξ random node (or link) failures due to model

layout or machine positioning inaccuracies (and interference).

In the Sect. 6, the effect of different choices of the design



parameter ξ on cloud network performance will be discussed

by extensive simulations under virtual layout inaccuracies and

interference.

Energy efficiency. For a variety of FoT entities, minimizing

the energy to be spent for communication/computing purposes

is a primary constraint [30]. It is therefore mandatory to de-

velop solutions to optimize energy usage (even at the expenses

of performance loss). Given that in recent microcontroller de-

signs the electric charge spent for transmission is comparable

to the cost for receiving [20], then the node degree ka (14)

provides a reasonable indicator of node lifetime by counting

the number of links monitored by the device a ∈ N (for

transmission/reception) during each cloud activity cycle5. The

electric charge subtracted by node a to the battery (energy

cost) during one activity cycle is thus approximated as

Ea = ka ×ET−R +ES, ∀a ∈ N (16)

where ET−R accounts for the electric charge spent by the

transceiver in active state while ES is the cost of active internal

oscillator and RAM (e.g., sleep mode). Node lifetime can be

modelled as Tlife = Tcycle × C/Ea where Tcycle measure

the duration of one cloud activity cycle and C is the battery

capacity.

Data-rate and QoS. In machine-type communications there

are several scenarios where a somewhat large amount of

delay-tolerant data needs to be transferred, with a temporary

larger data rate. Typical application cases include over-the-

air programming of devices deployed on field or acquisition

of logging-information. The use of low-power IEEE 802.15.4

devices with improved (and run-time programmable) PHY

data-rates can be therefore crucial to support these uncon-

ventional traffic patterns. Impact of reduced range and higher

interference capturing effects (Sect. 4) should be properly

accounted for during layout stress-testing.

Delay sensitivity. To comply with delay sensitive industrial

applications, network layouts should be designed so that

any path from GWs to FDs, and among any cloud device

pair, experiences small enough geodesic distance (in terms of

number of hops). This is typically required for fast servicing of

asynchronously generated and “sporadic” events or during the

management of safety-critical conditions. The average shortest

path metric Γ

Γ =
1

(N +R)(N +R− 1)

�

(a,b)∈N , a�=b

da,b, (17)

is defined as the mean of the geodesic length da,b over all the

node pairs of the augmented graph G(R) (of N + R nodes)

and it is a convenient metric for performance assessment.

B. Case study in an oil refinery site

The case study of Fig. 9 shows a practical example of layout

design for industrial sensor network. The wireless instruments

(gauge pressure sensors) are deployed in a 120m×45m oil

refinery site where a cooling tower unit causes the network

5The activity cycle might correspond to one superframe (e.g., of duration
1s for IEC 62591 and also typ. for IEC 62734).
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Fig. 9. Deployment case study: reference layout for the (120m×45m)
cooling unit site. N = 9 devices (8 FDs and 1 GW) deployed and M = 5
relay candidate set points. Bottom figure. Stress-testing of deployment is
simulated by a WiFi interference with power µℓ = −98dBm. R = 2 relays
are deployed to reinforce connectivity.

to be partitioned into two clusters (the FDs are deployed at

ground level). A single GW node is deployed to collect data

from FDs and re-route them over a Fieldbus network. The

FD nodes use a omnidirectional monopole antenna (vertically

polarized) while the GW employs a 2dBi omnidirectional

dipole antennas (with 90◦ beamwidth). The deployed wireless

instruments conform to ISA IEC62734. The Fig. 9 shows

the optimal position of the GW to guarantee connectivity

with all the FDs: this is located on the staircase behind

the cooling structure (6m from ground level). Connectivity

structure and link classification have been obtained by analysis

of the 3D CAD model of the plant and validated during post-

deployment verification by measurements carried out in the

corresponding site (see floor map plant in Fig. 9). Post-layout

verification confirms the predicted connectivity structure and

the effectiveness of the stochastic model for machine-type

links. Although connectivity is observed, additional relay

devices are deployed to limit the use of unreliable NLOS links

that would penalize the QoS in case of model inaccuracies or

co-channel interference.

The corresponding virtual simulated environment is illus-

trated at bottom of Fig. 9. Here we tackled the problem

of reinforcing connectivity focusing on weakly connected



sub-graph Gs ⊂ G of FDs (1-4). Remaining nodes are not

considered as critical being connected to the GW by LOS

type links with predicted LQI ĝℓ (8) larger than −58dBm for

all cases and PS ∼ 0.99. The additional deployment of R = 2
relay nodes connected with the GW by Type 1 guarantees

λ2 > 1 and PS ∼ 0.99 for the two-hop relayed paths

Focusing on node lifetime, the relay R2 monitors kR2 = 6
links and is the most critical instrument as maxa∈N ka = kR2.
Electric charge is modeled as in (16) assuming a typical active

low-power IEEE 802.15.4 PHY transceiver absorbing 19mA
[20] during transmission (or reception) of an IEEE 802.15.4

data frame of 4ms [8] composed by 127 bytes, and reception

(or transmission) of the corresponding ACK frame of 1ms
[8]. Therefore ET−R ≃ 19mA × 4ms + 19mA × 1ms =
95µC (micro-Coulombs). The additional cost of memory-hold

sleep-state is ES = 25µC [20]. Using (16), the electric charge

subtracted to battery by relay R2 on every activity cycle is

thus ER2 = kR2ET−R + ES = 595µC. For a battery with

capacity C = 8500 mAh (typical for C-cell lithium battery),

the lifetime of relay R2 is predicted as Tlife ≃ 1.6 yr., for

Tcycle = 1 sec. activity cycle.

A stress-testing of relay deployment for graph Gs is per-

formed by simulating a fully overlapping (η = 1) WiFi inter-

ferer acting as bursty disturbance with power µℓ = −98dBm
and Pµℓ = 1. Since µℓ ≥ β/βI = −100dBm with threshold

βI modeled as in (11), then connection probability is ruled by

SIR according to (9). While LOS Type 1 links are marginally

influenced by the additional interference, for NLOS Type 2

links unreliable connectivity is observed with PS ∼ 0.47.

This is due to WiFi disturbance, combined with possible

inaccuracies of 3D layouts and positioning. The deployment of

the relay nodes guarantees connectivity even in the presence of

overlapping interference: the network structure highlighted at

bottom of Fig. 9 can be considered as “interference-immune”

after stress-testing.

VI. PERFORMANCE EVALUATION OF CLOUD NETWORKS IN

RANDOM FIELDS

In this section we model the cloud-based sensor network

as a random geometric graph with probabilistic connectivity

[31]. Cloud nodes connect to each other with probability

PS(Cj) in (9), now depending on a randomly assigned link

type Cj , while WiFi interference acts as disturbance in a shared

spectrum access scenario. The goal is to highlight fundamental

connectivity properties and provide a comprehensive perfor-

mance evaluation of arbitrary dense sensor cloud network

structures for industrial environments fully characterized by

their link types. Focus is on connectivity, battery lifetime and

coexistence. For any link ℓ ∈ V of the random graph, class

ℓ ∈ Cj is assigned with probability

PCj = Pr[ℓ ∈ Cj ] ∀j = 1, ..., C (18)

that provides a virtual representation of the obstruction con-

figuration with loss σℓ as in (6). The binary symmetric

adjacency matrix [12] C(G) is now defined as in Sect. 5.

Probability function PCj serves as macroscopic description of

the deployment site complexity and it can be interpreted as an

indicator of the spatial density of the building blockage.
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Fig. 10. Iterative relay node deployment example (and connectivity structure)
using a reference layout.
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Fig. 11. Average shortest path metric for varying NLOS probability PC2 and
selected target redundancy ξ. The cloud network has density 0.02 nodes/sqm
and it is deployed on squared field of length 80m. Small-world model
reasonably holds for rewiring probability PC1 = 0.05 (or PC2 = 0.95).

The analysis herein is based on the following limiting as-

sumptions: i) cloud nodes are randomly deployed according to

the (homogeneous) Poisson Point Process (PPP), other models

can be found in [32]; ii) a simplified industrial environment

is considered as characterized by C = 2 link types modeling

near LOS (now indicated by j = 1) and severe NLOS (j = 2)

propagation, respectively6; iii) link types are independent and

identically distributed according to (18); iv) deployment stress-

testing in the shared spectrum access scenario assumes that

interference is acting as disturbance with same power for all

cloud nodes. This is equivalent to assume that the sensor cloud

is localized in a small area (of size in the order of 100m) with

WiFi interferer located far enough, so that differences due to

path loss are negligible [33].

6The approach can be easily extended for an arbitrary number of link
types, however we found that this choice provides a reasonably accurate
representation of the wireless connectivity in the considered plant scenarios.
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Fig. 12. (a) Connectivity Pr[λ2 > 0] under random 3D model inaccuracies,
for varying NLOS probability and selected values of target redundancy ξ =
1, 2, 3. (b) Predicted node energy consumption (mC) for the same values of
ξ.

In what follows, the iterative relay node deployment ap-

proach is illustrated using a reference layout: N = 18 FDs and

2 GWs are deployed in a squared random field of 150m×150m

characterized by the connectivity structure highlighted in Fig.

10. The network consists of q = 2 weakly connected clusters:

the first one (Cluster 1) contains the GW 1 and 9 FDsN1 ⊂ N
with [v2]i∈N1

< 0. Cluster 2 (corresponding to nodesN2 ⊂ N
with [v2]i∈N2

> 0) is weakly connected with N1 and contains

the GW node 2. At first iteration, the relay is chosen among

M = 10 candidate positions to provide a secondary path to

connect GW 2 with the cluster N1 (see highlighted links). The

new graph G(1) of N + 1 devices has now λ2(G(1)) = 0.45.

At second and third steps, 2 new relays are chosen to connect

pairs of FDs belonging to cluster N1 andN2, respectively. The

third relay provides λ2(G(3)) = 1.14 while clustersN1 andN2
are now connected by at least 4 disjoint paths. To conclude, for

the considered topology the additional deployment of R = 3
relay nodes guarantees reliable connectivity as λ2(G(3)) > 1
with ξ = 1 being the assigned target redundancy.

A. Small-world connectivity and node lifetime

The heterogeneity of link types ranging from near LOS

(with probability PC1) to severe NLOS (with probability

PC2 = 1 − PC1 ) makes the connectivity structure to be

reasonably described by a small world model where the

fraction PC1 of near LOS links can be interpreted as rewiring

probability [12]. To verify this property, in Fig. 11 the average

shortest path metric Γ defined in (17) is computed for varying

probability of NLOS links PC2 and target redundancy ξ. The

considered cloud network has initial density of 0.02 nodes/m2

(before relay deployment), in a squared field of length 80m:

additional relays are chosen from up to a maximum of

M = 150 candidate points and deployed to guarantee the

corresponding redundancy target ξ. For the considered cases,

a phase transition in the connectivity behavior exists for

PC1 = 5% (or PC2 = 95%) while for PC1 > 5% small-

world phenomena emerge. Small-world connectivity causes an

immediate drop of average shortest path metric (as Γ < 2),

thus simplifying the layout design for connectivity robustness

in delay-sensitive applications.
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Fig. 13. Interference stress-testing: connectivity probability for varying WiFi
traffic loads and for selected values of received power, NLOS probability and
target redundancy. Stress-testing of connectivity also includes the case for
enhanced PHY data rate (on the right).

In Fig. 12-(a) we now analyze the connectivity probability

Pr[λ2 > 0] subject to 2D model inaccuracies, for varying

fraction of NLOS links PC2 and redundancy ξ = 1, 2, 3 for re-

lay deployment. Considering propagation fields characterized

by a high fraction of NLOS type links 0.75 ≤ PC2 ≤ 0.9,

the target redundancy design parameter for 99% connectivity

should be set to ξ = 3. For mild propagation environments

characterized by 0.64 ≤ PC2 < 0.75 a reasonable value for

the target redundancy (to avoid unnecessary energy costs) is

ξ = 2. As depicted in Fig. 12-(b), connectivity robustness is

guaranteed at the cost of lower node battery lifetime, as energy

consumption increases with ξ. The figure shows the predicted

maximum node energy cost for the same design parameters

ξ and probability PC2 (modeling of consumption is given in

Sect. 5.B).

B. Interference stress-testing

In Fig. 13 the perturbation of connectivity probability

Pr[λ2 > 0] and graph structure due to a full-overlapping (η =
1) WiFi interference is analyzed for varying traffic loads Pµℓ ,

NLOS probability, target redundancy ξ = 1, 3 and received

power µℓ = −80dBm and µℓ = −95dBm, modeling different

WiFi node deployments. Immunity to interference is analyzed

versus frame collision Pµℓ , interference power µℓ and design

parameter ξ, looking for conditions where WiFi activity has no

meaningful impact on cloud connectivity. By choosing ξ = 3,

connectivity can be reasonably guaranteed against collision

probabilities Pµℓ ≤ 0.5 and Pµℓ ≤ 0.3, for µℓ = −95dBm
and µℓ = −80dBm, respectively. In the same figure (on the

right), stress-testing of connectivity is also carried out for

IEEE 802.15.4 devices configured to transmit at larger PHY

data rate (1Mbps). The more significant interference capturing

effect (Sect. 4) observed when reducing the DSSS factor from

Q1 = 8 to Q2 = 2 (in exchange for data-rate increase) limits

the maximum tolerable collision probability to Pµℓ ≤ 0.3 and

Pµℓ ≤ 0.15, respectively. The use of advanced cooperative

spectrum sharing policies (see e.g., [34]) is thus mandatory in

high traffic load scenarios.



VII. CONCLUDING REMARKS

In this paper we proposed industry-standard methods and

tools to support virtual coverage prediction, deployment op-

timization of industrial wireless cloud networks. A stochastic

model for the prediction of machine-type connectivity is pro-

posed and validated by measurements. The model can account

for imperfect node positioning and 3D layout inaccuracies or

uncertainties. We showed that the wireless links partitioned

into LOS/NLOS classes statistically describe the observed

propagation loss over short-range communication and given

the 3D structure of the obstructions (the position of the

industrial equipment and buildings). A separate channel model

is thus proposed to predict the QoS for each link-type. Next,

techniques and tools for relay deployment and prediction of

network performance in interference-limited environments are

tailored for industry-standard devices operating according to

different PHY layer configurations. The problem of relay

deployment is considered as well to improve the reliability

of cloud networks characterized by weakly connected clusters

of devices with an high percentage of unreliable NLOS links.

Experimental results and post-layout verification from the

surveys conducted in oil refinery environments confirm the

effectiveness of the proposed toolkit as it provides practical

solutions for virtual layout design with a degree of accuracy

reasonable for industrial network planning.
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