Obtaining the optimal cost-to-go map for large scale rough terrains is computationally very expensive both in terms of duration and memory resources. A fast algorithm for approximation of the optimal cost-to-go map in terms of terrain traversability measures for path planning on known large scale rough terrains is developed. The results show that the majority of the cost-to-go map values, computed from every terrain location with respect to the goal location, are near-optimal. Unlike Dijkstra algorithm, the proposed algorithm has inherently parallel structure, and can be significantly speeded up depending on the number of used CPU cores.
A fast cost-to-go map approximation algorithm on known large scale rough terrains
MAGNANI, GIANANTONIO
2015-01-01
Abstract
Obtaining the optimal cost-to-go map for large scale rough terrains is computationally very expensive both in terms of duration and memory resources. A fast algorithm for approximation of the optimal cost-to-go map in terms of terrain traversability measures for path planning on known large scale rough terrains is developed. The results show that the majority of the cost-to-go map values, computed from every terrain location with respect to the goal location, are near-optimal. Unlike Dijkstra algorithm, the proposed algorithm has inherently parallel structure, and can be significantly speeded up depending on the number of used CPU cores.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.