We propose a regression model for data spatially distributed over general two-dimensional Riemannian manifolds. This is a generalized additive model with a roughness penalty term involving a differential operator computed over the non-planar domain. By virtue of a semiparametric framework, the model allows inclusion of space-varying covariate information. Estimation can be performed by conformally parameterizing the non-planar domain and then generalizing existing models for penalized spatial regression over planar domains. The conformal coordinates and the estimation problem are both computed with a finite element approach.

Spatial regression models over two-dimensional manifolds

ETTINGER, BREE DANIELLE;PEROTTO, SIMONA;SANGALLI, LAURA MARIA
2016-01-01

Abstract

We propose a regression model for data spatially distributed over general two-dimensional Riemannian manifolds. This is a generalized additive model with a roughness penalty term involving a differential operator computed over the non-planar domain. By virtue of a semiparametric framework, the model allows inclusion of space-varying covariate information. Estimation can be performed by conformally parameterizing the non-planar domain and then generalizing existing models for penalized spatial regression over planar domains. The conformal coordinates and the estimation problem are both computed with a finite element approach.
2016
Functional data analysis, Spatial data analysis, Generalized additive model, Partial differential regularization, Penalized regression, Smoothing on manifolds
File in questo prodotto:
File Dimensione Formato  
2016_Ettinger-Perotto-Sangalli_Biometrika.pdf

accesso aperto

Descrizione: Post print
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
2016_Ettinger-Perotto-Sangalli_Biometrika_suppl-material.pdf

accesso aperto

Descrizione: Post print of supplementary material
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 225.99 kB
Formato Adobe PDF
225.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/972750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact