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SUMMARY

We propose a regression model for data spatially distributed over general two-dimension-
al Riemannian manifolds. This is a generalized additive model with a roughness penalty term
involving a differential operator computed over the non-planar domain. Owing to a semi-
parametric framework, the model allows the inclusion of space-varying covariate information.
Estimation can be performed by conformally parameterizing the non-planar domain and then by
generalizing existing models for penalized spatial regression over planar domains. The cogfor-
mal coordinates and the estimation problem are both computed by a finite element approach.

Some key wordgieneralized additive model; partial differential regularization; penalized regression; smoothing on
manifolds.

1. INTRODUCTION
1.1. Motivation 2

We consider smoothing data distributed over general non-planar two-dimensional domains,
and more generally regression for data distributed over non-traditional surface domains. The
applied problem driving this research is the study of hemodynamic forces, such as shear stress
and pressure, exerted by blood-flow on the wall of an internal carotid artery. The data used in
this study are part of the AneuRisk project, a scientific endeavor that investigated the role of
vessel morphology, blood fluid dynamics and biomechanical properties of the vascular wall in
the pathogenesis of cerebral aneurysms; see Passerini et al. (2012) and Sangalli et al. (2009a).
Figure 1(a) shows an internal carotid artery affected by an aneurysm, a deformation of the vessel
characterized by a bulge of the vessel wall. The shear stress exerted by the blood flow on the
wall of the artery, at the systolic peak, is represented by a colormap. Each value refers.do a
point (z(1), 7[], z[3) on the bi-dimensional and non-planar artery wall. Within the AneuRisk
project, these data have been analyzed by simplifying the three-dimensional artery to a cylinder.
A bijective cylindrical map, which implicitly fixes the radius to a constant and does not account
for the curvature of the vessel, is used to flatten the artery wall; standard spatial methods are then
applied in the resulting planar domain. Though very convenient from an analytical point of view,
this approach is inaccurate, since the radius and curvature of the vessel are geometrical quantities
that greatly influence the hemodynamics in an artery, and are shown to be discriminating factors
of aneurysm presence and location (Sangalli et al., 2009a). Moreover, this approach is not able
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Fig. 1. A visual illustration of the method. (a): Shear sirédyn/cn?) exerted by blood flow on the wall of an internal carotid arter
affected by an aneurysm. The colormap shows the moduluofidi shear stress at the systolic peak. The colormap rdrges
0 dyn/cn? (white) to 180 dyn/cr (red). (b): A triangular mesh reconstruction of the wall ko internal carotid artery in (). (c):
Planar triangular mesh generated by a conformal flatterfiigeamesh in (b). (d): Solution to equivalent estimationkjbem
solved on the planar domain in (c). (e): Solution to estioraproblem mapped back to the original manifold domain.

to consider vessels affected by a large aneurysm, as ind-iguFor these types of domain
geometries it is impossible to define a bijective cylindricgap unless the aneurysmal sac is
removed. This suggests the development of an approachatake into account the geometry
of the domain. In addition, we also want to include the loadsel geometry as space-varying
covariate information to better explore the relationshigween the morphological features of
the vessel and the hemodynamics.

Non-planar domains are usually approximated by three-dsmeal triangular meshes char-
acterized by varying distances and angles between neighowertices. Figure 1(b) displays
an example of a triangular mesh that approximates the antailyin Figure 1(a). Few methods
are available to deal with data on non-planar domains.titerachemes for nearest neighbor av-
eraging have been developed to work on surface meshes ¢Hgle, 2006). In this approach,
the value of the variable of interest at each vertex of thehsesbtained by averaging the values
at the neighboring vertices. This process is repeated aletmies to create a smoothing effect.
A more sophisticated method, heat kernel smoothing, isepted, e.g., in Chung et al. (2005).
This is a geodesic distance-based kernel smoothing agprfoamon-planar domains. How-
ever, neither nearest neighbor averaging nor heat kerrathing is well-suited for our applied
problem, as they are not designed to include space-varyimgriates. Among the other models
devised to handle data over non-planar domains we cite fr®aghes devoted to specific types
of Riemannian manifolds such as spheres, hyperspherestregpherical splines introduced
in Wahba (1981) and Baramidze et al. (2006), the models itbescby Jun & Stein (2007), Jun
(2011) and Gneiting (2013), and methods that work on morergéisphere-like domains, e.g.,
those of Alfeld et al. (1996) and Lindgren et al. (2011).

In this paper we propose a regression method that efficidrathdles data distributed over
general two-dimensional Riemannian manifolds and alsludes space-varying covariate in-
formation, generalizing the work of Ramsay (2002), Sangalal. (2013) and Azzimonti et al.
(2014Db) to the case of non-planar domains. The resultirighasirs are linear in the observed
data values and have a penalized regression form. Morabegrroposed model has a high com-
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putational efficiency, thanks to the use of scientific cormgutechniques and in particular of the
finite element approach. The excellent performance of thpgsed methodology is shown by
simulation studies on both test domains and domains frohareery geometries. The proposed
models have important fields of application not only in thedioal sciences, but also in the
geosciences, environmental sciences and engineering. 70

1.2. The model
Consider fixed data locationsz; = (1), 752, Tjj3)) : @ = 1,...,n} lying on a non-planar
domainI that is a surface embeddedi. For each locatior:;, a real-valued random variable
of interest,z;, is observed. We assume the model

zi=f(zi)+€& (i=1,...,n) 1)

where¢; are independent errors with zero mean and constant varighcand f is a twice
continuously differentiable real-valued function defiredthe surface domaih.

To estimate the functiorf in (1), we propose to minimize a penalized sum of squared erro
functional, with a roughness penalty involving a diffei@ahbperator computed ovét. In par-
ticular, we generalize to manifold domains the spatial esgion models over planar domains
in Ramsay (2002) and Sangalli et al. (2013), where the roeggpenalty involves the standards
Laplacian of the function to be estimated. In detail, let oasider a surface = s(up, uf)
defined on a planar domai, with u = (uf;),upz) @ generic point inf2. Denote the gradi-

ent of s by Vs(u) = (0s/0up(u), ds/Oupy (u))T, where” is the transpose operator. More-

over, given a vector field(u) = {vp)(u), vy (u)}T on Q, define the divergence of the vector
field as divo(u) = vy /Oupy(u) + dvjg /Oupy (u). Then, the Laplacian of the surfaeés de- &
fined asAs(u) = div{Vs(u)} = 823/8u%1] (u) + 825/8u[22} (u). The LaplacianAs provides a
simple measure of the local curvature of the surfacnd is invariant with respect to rigid
transformations of the spatial coordinatesnfThe generalization of the Laplacian to functions
f = f(zp), ), z(3) defined on a non-planar domdinwith = = (x}, 29, 73)) € I, requires
the computation of the gradient opera¥or and of the divergence operator gdigssociated with «
I' (see, e.g., Dierkes et al., 2010, and Section 2). Itis thasiple to define the Laplace—Beltrami
operator off, represented bAr f(z) = divr Vr f(z). Similarly to the standard Laplacian, the
Laplace—Beltrami operator provides a simple measure oloited curvature of the functiorf,
and is invariant with respect to rotations, translations rflections of the spatial coordinates of
I'. Thus, the use of the Laplace—Beltrami operator in a rougghpenalty ensures that the degree
of smoothness does not depend on the orientations of thdinate system or of the domaih

As a consequence, we propose to estinfaby minimizing the functional

Tealf) = 3o 45— f@) +A [ (Arf@) ar @
i=1

where ) is a positive smoothing parameter; the highds, the more we control the roughness
of f, the smaller\ is, the more we allow flexibility to fit the local curvature ¢f The Laplace—
Beltrami operator is also used by heat kernel smoothingpatth in a different framework, asiwo
detailed in Section 5. The spherical splines introduced ahh¥é (1981), Alfeld et al. (1996)
and Baramidze et al. (2006) consider the same penalized $wouared errors functional in
(2), or similar functionals where the Laplace—Beltramiraper is replaced by other differential
quantities.
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In this paper, we present a solution to the estimation prot&) that combines tools from
differential geometry, analysis and scientific computifilge key idea is summarized in Figure 1.
We first conformally parameterize the non-planar donigiso that we can conformally flatten
I" into a planar domain; see Figure 1, (b) to (c). In particullhe conformal parametrization
allows us to reformulate the estimation problem (2) overangt domairt2, by providing an
appropriate change of variable from the surface doniaibo 2. This leads to an estimation
problem overQ2 where the geometry of the original domdinis appropriately accounted for.
In this new setting, the problem is solved by generalizingtisbregression models over planar
domains; see Figure 1(d). From a computational viewpoiat,se finite elements to compute the
conformal flattening map and to solve the equivalent estimairoblem on the planar domain;
see Figure 1, (b) to (d). Finally, by properly exploiting tenformal map betweeh and(2, we
are able to provide the estimator over the original nongurlatomain; see Figure 1, (d) to (e).
The proposed model has been implemented in R and Matlab.

2. FORMULATING EQUIVALENT ESTIMATION PROBLEM ON A PLANAR DOMAIN
2:1. Conformal parametrization

We consider a non planar domaihthat is a two dimensional Riemannian manifold. We
assume in the sequel thatladmits a global parametrization

X:Q—-T

u = (upp,up) = T = (T, T, T[3)),

®3)

whereQ) is an open, convex and bounded seRinand the boundarg$2 of Q2 is sufficiently regu-
lar. The mapX provides a change of variable between the planar coordinate (uy), u;) and
the non-planar coordinatas= ([}, z[2}, 7[3). Such global parametrizations are available for a
large class of bidimensional manifolds, including surfaegth self-intersections and holes and
other non-trivial geometries; see, e.g., Gu & Yau (2003pdrticular, global parametrizations are
available for all the geometries considered throughouptqer. Our goal is to usk¥ to rewrite
the estimation problem (2) over a planar dom@insee Figure 1, (a) to (d). Consider the first
order partial derivatives ok with respect to the planar coordinates) anduy), 9X/0uy;(u)
and 9X/duy (u), which are column vectors iR?. Let (-,-) denote the Euclidean scalar prod-
uct of two vectors and - || the corresponding norm. Then, the m&pis said to be conformal
it [|0X/0up(u)||* = ||0X/dug (u)||” and (X /dupy (1), 0X/Buy(u)) = 0, for anyu € Q.
Such maps are unique up to dilations, rotations and tramstatsee, e.g., Hurdal & Stephenson
(2009). They preserve angles and the most important geimaiefieatures of the domain. The
use of a mapX with these properties allows us to obtain a simplified vergibthe estimation
problem.

To rewrite problem (2) o2, we consider the Jacobian matrix &f, defined asv X (u) =
{0X/0up(u), 0X/Oup(u)}, for u € Q; this matrix has maximal rank equal to two. Using
the Jacobian, we define the symmetric positive definite matri

2
X aX aX 2
<5“[1] (u), Bupy) (u)) H%(U)H
The matrixG(u) is the space-varying metric tensor associated with the Kafor any pointu

in the planar domaif?, G(u) describes the local geometry of the non-planar donhaiat the
corresponding point = X (u). The determinant of7(u) is strictly positive; in particular, there

Gu) =VXw)!VX(u)= u € Q.
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exists a positive constantsuch that, for any: € Q, D(u) = det{G(u)}'/? > 5. The quantity
D(u) identifies the elemental area involved in the change of blifiom the original non-planar
coordinates: € I to the planar coordinatesc €, i.e,dI" = D(u)dS2. Finally, we introduce the s
matrix K (u) = D(u) G~ (u), which is also symmetric positive definite for amyc , since
D(u) is positive and the inverse metric tensgr!(u) is symmetric and inherits positive defi-
niteness fronG (u).

After setting the geometrical framework, we now focus onftirection f to be estimated in
model (1). By exploiting the maf, instead of the functiorf () defined on the manifolfl, we s
can consider the functiofic X (u) = f{X(u)} defined over the planar dom&ih The function
f o X provides a planar parametrization 6f Owing to the regularity assumptions gnand
X, fo X €C?(Q). Using the mapX, theI'-gradient of f can be parametrized in terms of the
planar coordinates asVrf(z) = VX (u) G~ (u)Vf{X(u)} € R3, for anyx € I' and with
u = X"!(x), whereV f{X(u)} denotes the standard gradient@mulefined in Section-2; see, s
e.g., Dierkes et al. (2010). Similarly, tfiedivergence of a vector field = {v};j(z), vy (:c)}T,
defined on the non-planar domdincan be parametrized in terms of the planar coordinates
divro(z) = D(u) '[9/ D(w)vp {X (1)} 4 9/, D(u)vig{ X (u)}]. Hence, the Laplace—
Beltrami operator can be re-expressed in terms of the po@dinates: as

: 1 .

Arf(z) = divp [V f{X (u)}] = Wd'V[K(U)Vf{X(U)H, (4)
where div denotes the standard divergence operator Qvaefined in Section -2. Thus, by
exploiting (4), after setting,; = X ~!(x;), we can reformulate the estimation problem (2) over
the manifoldl’ as an equivalent problem over the planar donaias follows: find the function
f o X, defined ort2, that minimizes the functional

n 2
Joa(foX) =3 [z — f{X(u)})’ + )\/Q ﬁ(div[K(u)Vf{X(u)}]) Q. (5)
i=1
Problem (5) can be considered as a generalization of thmastin problem for spatial regression
models over planar domains in Ramsay (2002) and Sangalli €G13) to a more complex e
setting, characterized by the presence of the quanfifiges) andD(«) in the roughness penalty
term. These quantities appropriately account for the gégnuod the original manifoldl’. As
previously remarked, the mali and its corresponding planar domdhare not unigue; see
Section 23. However, the term& (u) andD(u) adjust for each mag considered and for the
corresponding planar domafh This leads to different planar parameterizations of thetion 1
f, as well as of the estimation problem (5), but all equivalenptoblem (2) on the original
manifoldT".
In the special case of a conformal map, we obtain a simplified estimation problem
over Q. In fact, for a conformal map we havB(u) = ||0X/dupy (u)||*, G(u) = D(u)l,
G~ Y(u) = D(u)"'I, and K (u) = Iy, wherel,, is the identity matrix of ordem. The Laplace— s
Beltrami operator (4) also simplifies tor f{ X (u)} = D(u) " *Af{X (u)}, whereA is the stan-
dard Laplace operator defined &n Thus, the estimation problem (5) simplifies to finding the
function f o X, defined orf2, minimizing the functional

Joa(foX) =) [a —f{X(ui)}]2+>\/Q [D(u)‘l/zAf{X(u)} ®da. (6)

i=1
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2:2. Characterization of the estimation problem on the planamein

180 We hence characterize the solution to the estimation pmol{®) on the planar domain;
see Figure 1(d). We have to introduce a suitable functiotingetConsider the Sobolev space
H™(Q), i.e., the space of the functions which belongZ®(f2) along with all their distribu-
tional derivatives up to the order (Lions & Magenes, 1973). Here we propose a variant of the
function spaceti™(Q2) given by the spacél)’ () = {h € H™(Q) : v"KVh = 00n9Q}

s C H™(S2), consisting of thed™ (Q)-functions with normal derivative” K Vh identically equal
to zero on the boundary(2, wherev is the unitary outward vector normal @f2. The re-
quested condition on the derivative is equivalent to theditmmn that the normal derivative
on the boundary of" vanishes. The functionalg \(f o X) in (5) is well-defined since, for
(f o X) € H%(Q), the roughness and sum of squared errors terms are wellsposad) to the

w0 inclusion H2(Q2) ¢ C°(Q) that allows for pointwise evaluation ¢gfo X. The boundary condi-
tions in H,%O 1« (2) ensure uniqueness of the solution to the estimation prgldemthe Supple-
mentary Material.

Letz = (z1,...,2,)" be the vector collecting the observed values in (1) for thentjty of
interest. For any functioh defined orl’, such that: o X is defined orf2, we denote the column

105 vVector of evaluations of the functionat then data locationg:; by

hy = [h(z1), - b)) = (X (un)}, - h{X (un)}] @)

To simplify the notation, in the following we suppress thepeledence on:.. The following
proposition states that the estimation problem is well g@s® characterizes the estimator.

PROPOSITIONL. The estimatolf o X that minimizes%) overH?, 1 (Q) satisfies the relation
R 1 : 2
qun—k)\/ 5ouv{KV(qu)}onv{KV(foX)}dQ =qlz (8)
Q

for any functiong defined ol such thaty o X € HZQK(Q), with q,, andf,, defined according
20 {0 (7). Moreover, the estimatof o X exists and is unique.

For any fixed mapX, Proposition 1 establishes the existence and uniquendhg gblution
to the estimation problem (5) di. Since, as shown previously, this problem is equivalent to
the estimation problem (2) dn, Proposition 1 also guarantees existence and uniquenels of t
solution to (2). Its proof is given in the Supplementary Mitle

205 2.3. Conformal flattening of non-planar domains
In this section we describe how the mapand the corresponding planar domé&lrare de-

termined; see Figure 1, (b) to (c). Conformal parametedrat a very active area of research,
are extensively used in graphics in a variety of applicatifsom re-meshing to texture mapping.
For surfaces without self-intersections and holes, theagmies for approximating a conformal

20 parameterization fall into two categories: harmonic epengnimization (Angenent et al., 1999)
or circle packing (Hurdal & Stephenson, 2009). Here, we emfte first approach. Since the
application considered in this paper features domaindagjmally equivalent to a cylinder, we
adopt the method for flattening tubular surfaces developddaiker et al. (2000). We describe
the construction of the conformal map for a tubular surface with the help of the example in

a5  Figure 2. A tubular surfacE has the same topology as an open ended cylinder and is entbedde
in R3. The open ends of the cylinder, denotedbgyandb, , represent the boundary bfand are
homeomorphic to a circle. With these assumptidhis conformally equivalent to a rectangle in
R2.
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Fig. 2. Example of conformal flattening. Top left: three-dimsional triangular mesh approximating a non-planar w@stain. Top
center: the oriented boundafy. Top right: the annulus generated by the flattening procedotom left: the planar triangulated
domain obtained as a final product of the conformal flatteoithe test domain. Bottom right: colormap of the quanfitfu)
associated with the conformal flattening map.

The mapX in (3), having the conformal properties, is identified by siadution (u;), ujy)) of
two coupled differential problems defined on the originahifad I'. In particular, the magX is 2
calculated in two steps, the first providing the conformalramateu ;) and the second providing
the conformal coordinateyy. In particular, the coordinatey; is determined by solving

—Arupp=0 onl,
U = 0 on by, (9)
U = 1 onb;.

To define the differential problem identifying the coordmay,, let us cut the surfacg along

a curveC' that runs fromby to by such thatu ;) is strictly increasing along’; see Figure 2, top
left. The maximum principle ensures the existence of sualt 8Lédons & Magenes, 1973). Thezs
cut is not uniguely determined; Sectior23xplains how to avoid any influence of the cut on
the estimation problem. The boundarigsand b, together with the cut’, form an oriented
boundary, denoted by, which circles aroundy, then alongC, aroundb;, and finally back
down C' in the opposite direction. Thus, the bounddsyis a closed curve whose direction is
determined by the orientation of the surface; see FigurepXcénter. At this point, we defingy 2
as the solution to the differential problem

—Arup =0 onT’
upy(e) = J,, 7~ ds  onB,

wheregg € by is a designated starting point of the boundétye € B, duj;)/0v is the normal
derivative ofu[;; andds denotes the arc-length element aldig

The combined effect of problems (9) and (10) is visualizedrigure 2. The top left panel
shows a three-dimensional tubular test surface approgziiiat a triangular mesh. The boundarys
B is highlighted in red and its orientation is shown in Figuréop center. The annulus generated
during the flattening procedure is shown in Figure 2, toptrigtis annulus hag, as inner
boundary, not clearly visible in the figure, ahdas outer boundary. The rectangle generated at
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the end of the flattening is shown in Figure 2, bottom left, &iislenclosed by the red lines that
correspond to the bounda#y in Figure 2, top center. Moreover, the rectangular plananalo

is properly scaled to maintain the same proportion as thggnali surface, i.e., the height of the
rectangle is set tdr /|C|, where|C| is the length of the cut.

3. COMPUTATION OF THE CONFORMAL MAP AND OF THE ESTIMATOR
3-1. Finite Elements

Problems (9)-(10) describing the conformal m&pand problem (8) characterizing the es-
timator f o X are infinite-dimensional and cannot be solved analyticéllgtandard approach
consists of recasting them into a finite-dimensional fuorcspace that approximates the original
infinite-dimensional space. Then, the problem is solvetérinite-dimensional space, normally
by exploiting a finite-dimensional basis spanning it. Intigaitar, since (9)—(10) and (8) involve
partial differential operators, we resort to finite elemepéaces and the associated basis. The
finite element method is widely used in engineering appbeoatto deal with problems involv-
ing partial differential equations (Gockenbach, 2006; Garani, 2014). Finite elements are a
generalization of the widely-employed univariate splinadtions, even though finite elements
are usually less regular than splines. Similarly to unatarisplines, finite elements partition the
domain of interest, either planar or non-planar, into subains. Then, the solution is approxi-
mated via a globally continuous function which coincidethve polynomial of a certain degree
on each subdomain, i.e., a piecewise polynomial. In pdaticanalogously to the basis for uni-
variate splines used to describe piecewise polynomialesjmhe finite element basis is used to
describe piecewise polynomial surfaces. The use of findmehts makes problems (9)—(10) and
(8) numerically tractable and reduces them to linear system

Convenient domain partitions, in both the planar and namgl settings, are provided by
triangular meshes. Figure 1(b) and (c) and Figure 2 show pbemnof both non-planar and planar
triangular meshes. In the triangulation, two adjacenhgies share either a vertex or a complete
edge and the union of all the triangles provides an apprdi@mdor the whole domain. The
boundary of the domain and any interior hole are represemdtie polygon generated by the
outer edges of the triangulation. In the simulations andiegtipns considered in this paper the
vertices of the non-planar mesh coincide with the data locgtointsx, ..., z,, so that the
conformal flattening provides a planar mesh witkertices coinciding with the corresponding
data locations:;; = X ~!(x;) on the planar domain. Below we consider the general caseewher
mesh vertices and data locations do not necessarily ceincid

Starting from a triangulatioff” of a non-planar or planar domain, we can introduce a locally
supported finite element basis that spans the space of ttewige polynomials ovef . This fi-
nite element space, denoted Hy}, discretizes the infinite-dimensional spadé. In this paper,
we use linear finite elements where each basis funatipis associated with a triangle vertex
& (j=1,...,N). The basis function); coincides with thejth hat function, a piecewise linear
polynomial which assumes the value one at the vegfteand the value zero on all the other
vertices of the mesh, i.ey;; (&) = d;;, whereé;; denotes the Kronecker delta symbol. Figure 3
shows an example of a linear finite element basis functionamptanar and planar triangula-
tions. The locally supported nature of the basis functipnss evident.

Now, lety) = (31, ...,¢n)" be the column vector collecting thé basis functions associated
with the IV verticesé; (j = 1,...,N). Then, each functiork in the finite element spacH%
can be represented as an expansion in terms of the basisofungt ...,y y. In particular,
h(-) = Zj\f:l h(€)¥;(-) = hTe(-), whereh = {h(&1), ..., h(¢n)}T is the column vector of the
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Fig. 3. Colormap of a linear finite element basis on a nongldleft) and on a planar (right) triangulation.

evaluations oh on the NV vertices of the mesh. Each functiéne H% is thus uniquely identified
by its evaluations on the mesh vertices. 285

The finite element spacH% is characterized by less regularity with respect to the epac
involved in (9)—(10) and (8) which are subsetsit. This will lead us to provide an equivalent
formulation for problems (9)—(10) and (8) in a suitable silusf the spacéf!, that only involves
first order partial derivatives; see (11) and (12), respelsti

3-2. The finite element computation of the flattening map 200
To compute the conformal coordinates in (9)—(10) we appnake both coordinates;;; and
ug With functionsH%(F), which are globally continuous and coincide with a linearypot
mial over each triangle of the non-planar mésh approximating the manifold’. To obtain an
equivalent formulation of problems (9)—(10) suited fostfihite element discretization we use a
classical result stating that;; in (9) is the minimizer of the energy functional 205

1
() = 5 [ IVruyPar 1)

and the same result appliesug, in (10) (Haker et al., 2000; Dierkes et al., 2010). This refof
lation reduces the regularity assumptionswp anduy with respect to the original problems
(9)-(10) requiringuy}, ug) € H?(T'). Now the problem is well defined in the spaég (),
which can be approximated with the finite element spHé,éF).

The conformal flattening method maps the non-planar trilEmgoeshl’+, that approximates s
the surface domaiir, to a planar triangulatioi+ of 2, without flipping or breaking any of
the triangles; see Figure 1, (b) to (c). Moreover, this mayvides the termd<(u) andD(u)
associated with the mali. The computation of these terms, together with the planahifie-,
conveniently set up the planar estimation problem (8) todbeesl via planar finite elements, as
detailed in the following section. The Supplementary Matdurnishes more details. 305

Remarkl. The conformal rectangular domain has two artificial bouiedamgenerated by the
cut, denoted by and C’; see Figure 2, bottom left. There are two alternative appresdo
ensure the necessary periodicity of the estimatg afong this artificial cut. The first approach
consists in repeating the planar triangulation and theesponding data values aloagandC’,
as shown in Figure 2, bottom left; due to the locally suppbriature of a finite element basis;.
it is in fact sufficient to repeat only a small portion of theatrgulated domain. The second ap-
proach consists in imposing periodic boundary conditi@morcing (f o X)|~ = (f o X)|
andvV(f o X)|, =TV (f o X)|,, wherev and.’ are the unitary outward normal vec-
tors toC' andC’, while we denote the restriction of the functigre X to the generic setl C R?
by (f o X)| 4. The second approach leads to computational savings veiffece to the first, but a:s
formally demands the introduction of a new function spacertuperly rewrite the estimation
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problem as well as to deal with boundary terms. In SectioBsaBd 4, for simplicity of ex-
position, we follow the former approach, but both methods iexplemented and numerically
assessed in Sections 5 and 6.

3:3. Finite element solution to the estimation problem

We now show how to solve the estimation problem (8) using thtefelement spacH%(Q),
associated with the planar me@h- yielded in the previous step of the procedure. By introduc-
ing a proper auxiliary functiory, as detailed in the Supplementary Material, it is possible to
obtain the following reformulation of the estimation prebi (8), suited for a finite element ap-
proximation in the spacél;-(2): find (f o X, g0 X) € {Hy, x(2) N C°(Q)} x H'(R2) such
that

antn — A/ V(go X)"KV(go X)dQ = q 2

" (12)

/ (po X)(g o X)DdO + / V(po X)TKV(f o X)dQ = 0
Q Q

forany (go X,po X) € {H}) () N C°(Q)} x H'(Q2). This formulation requires less regu-
larity on the functions involved with respect to formulati(8), defined inH,%Q (). Neverthe-

less it can be shown that the solutigfrb X to (12) belongs tcH,%O x(2). See, e.g., Lions &
Magenes (1973). ’

The functions and integrals in (12) can be approximatedgusinctions in the finite element
spaceH%(Q), so that problem (12) is approximated with its discrete cexpért: find(f o X, g o
X) € HX-(Q) x H3-(Q) that satisfy (12) for anyg o X,po X) € H-(Q) x H;T(Q), where the
integrals are now computed over the triangulatiop. Let ¢ = (¢, ...,1¥n)" be the column
vector of finite element basis functions that sﬁai;u(Q), associated with the nodes, ..., &y
of Qr. Let{¥}; ; = ¢j(u;), ¢ =1,...,n; j=1,...,N) be then x N matrix of the evalua-
tions of theN basis functions at the data locations.,, . . ., u,,, whereu; = X ~!(z;). For any
function h o X € H1(Q), denotehy = {ho X(&),...,ho X(£n)}T, so that, in accordance
with the notation introduced in (7h, = {ho X(u1),...,ho X (u,)}’ = Yhy. If the mesh
vertices coincide with the data location points, as in treeaaf the simulations and applications
considered in this paper, thén; = h,, and¥ = I,,. Moreover, consider th& x N matrices

Ry = P! DA, Ry = VT KV dS.
Qf Qf
Thus, the integrals in (12) can be expressed as

V(go X)TKV(go X)dQ = g5 Rign,
Qr

/ (po X)(g o X)DdS2 = pjyRogw, V(po X)TKV(foX)dQ = plRifn.

Qr Qr

Let Oy denote the column vector of lengtki of zero entries. The discrete counterpart of the
estimation problem (12) thus reduces to solving a lineaesysas stated in the following propo-
sition.
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PROPOSITION2. The estimatorf o X H1L(Q) that solves the discrete counterpart of thes
estimation problem1() is given byf o X = {%4, such thafy satisfies

—UTU AR\ (x0T
( AR, >\R0> <gN =\ oy ) (13)
wheregy is the vector associated with the auxiliary functignin (12). Moreover f o X is
uniquely determined.

Uniqueness of the solution to (13) is ensured by positivendefiess of the matriceR, and
(\I/T\I/ + )\RlelRl) . Owing to the positive definiteness and thus invertibilitytlidse matri- sso

ces, Proposition 2 implies th&t; = (\I/T\I/ + )\RlelRl)_l UT%. The estimator is thus linear
in the observed dataand has the typical penalized regression form, with thelioags penalty
matrix RlRo‘lRl accounting for the domain deformation implied by the flatigrmap via the

termsD and K in the matrices?y and ;.

4. MODEL WITH COVARIATES 355
Space-varying covariates may be included in the model bgidering a generalized additive
framework, as done in Sangalli et al. (2013) for planar dosdietw; = (w), . - - ,wi[d})T be

ad-vector of covariates associated with the variable of eger; observed at the locatiary. We
modify model (1) as

zi=wl B+ (=) +e (i=1,...,n), (14)

where € R? is the vector of regression coefficients and the remaininggeare defined as inso
(). This can be regarded as a partially linear model; sge, ldardle et al. (2000). To estimate
G andf in (14), we minimize the following penalized sum of squares functional

- 2
IerB.0) = 3o (5= ul 8= f(w)Y 42 [ {Brs@)? ar.
i=1
Thus, using the magX, we can consider the following equivalent estimation problever the
planar domain2: find 8 € R?andf o X € HELO’K(Q) that minimize

n

Jor(B,f o X) =3 [5— wl'8 — F{X(u)}]> + A /Q ﬁ (MK )V F{x()]) de2

=1 (15)
Let W be then x d matrix whosei-th row is the vectors! of the covariates associatedes
with the i-th data location. We assumi& has full rank. DefineP = W(WTW)~'W7 to be
the matrix that orthogonally projects on the subspacBospanned by the columns oF. Let
@ = (I — P). Then the following result holds.

PROPOSITION3. The estimator$ and f o X that minimize {5) overR¢ and HELO’K(Q), are
given respectively by = (WTW)= W7 (z —f,) and f satisfying -
L Qf, + A/ %div{KV(q o X)}div{ KV (f o X)}dQ = 2 Q= (16)
Q

for any functiong defined orl" such thatg o X € H?2, ;-(Q). Moreover, the estimator§ and

A

f o X exist and are unique.
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To prove this result, we first differentiate the functiom@l \(3, f o X') with respect ta3, ob-
taining the minimizerd = 3(f). After plugging 8 = 3 into (15), the proof follows the one of
Proposition 1.

Following the same arguments invoked for the model in Secti@, an auxiliary functiorny
is introduced to derive the weak formulation of (16), analagly to (12). Hence the estimation
problem is well suited for the discretization via a finiteraknt space, and yields the following
result.

PROPOSITION4. The estimatorsi € R? and f o X e H() that solve the discrete coun-
terpart of the estimation problem with covariates are= (WZW)1W7(z —f,)and f o X =
14, such thaty satisfies

—0TQU AR v\ [(—VTQz
() (o) = (C0.7): @

where gy is the vector associated with the auxiliary functign Moreover 3 and f o X are
uniquely determined.

From (17) we derivéy = (37QU + AR, Ry 'R;)~'97Qz, and the estimator§ andfy are
thus linear in the observed data valuesDenote byS; the n x n matrix Sy = ¥ (¥TQV +
AR Ry ' Ry)~ 19T Q. Using this notationf, = S; z and3 = (W' W)~'W7 (I — Sy) 2. Since
E(z) = WB +f, and vafz) = o? I,,, with some algebra we derive

E(f,) =S:t,,  EB) =B+ W'W) "W (I, — Sf)fn, (18)
var(f,) = 0% S; 57, (19)
var(3) = 2(WIW) ™ + 2 (WIW) W (Sp STYw(wTw) . (20)

Now let S denote the smoothing matrik + @) .Sy and consider the vectar of fitted values at

then data locationsz = W 3 + f,, = S z. To measure the equivalent degrees of freedom for this
linear estimator, we can use the trace of the smoothing xp&tfF). We can then estimate® by
62 = (2 — 27T (2 —2)/{n —tr(S)}. This estimate ofr, in combination with the expression in
(20), can be used to derive approximate confidence inteforl$ and for the pointwise evalua-
tions of f. The Supplementary Material provides a simulation studyppsrt of the asymptotic
normality of these estimators. Moreover, the smoothingup@ter)\ can be selected by general-
ized cross validation, minimizing the quantity GOV = (2 — 2)7(z — 2)/[n{1 — tr(S)/n}?].
The predicted value of a new observationzgt,; with associated covariates,, ; is given
by 21 =wl 1B+ f(unt1) = wl B+ 5 (uns1), whereX (uy11) = @p41. The mean and
variance ofz, ., can be obtained from the expression above and approximeticpon inter-
vals may be derived. Owing to the conformal m&pbetween thd and(?, the solution to the
estimation problem and these distributional results canlddained on the original non-planar
domain; see Figure 1, (d) to (e).

The estimators have two sources of bias. One source is tratypeéarm, and this is typical
of regression models involving a roughness penalty: urttesdrue functionf is such that it
annihilates the penalty term, this term will bias the estonarhis source of bias disappears as
n increases, in the sense of infill asymptotics, if the smogthiarametep decreases with.
Letting A decrease with appears natural, since having more observations decrédasesed
for regularization. A second source of bias is the discagitn, and is common to any model
employing a basis expansion. This source of bias disapesatse mesh is appropriately re-
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fined. These convergence results follow from Azzimonti e{2014a) and are formalized in the.w
Supplementary Material. The bias always appeared nelgigibour simulations.

5. SMULATION STUDIES

In this section we illustrate the performance of the proddeehnique on different non-planar
domains. We compare three methods:

A: the proposed spatial regression model over non-plansuadts; a15

B: the spatial regression model over planar domains inttedun Ramsay (2002) combined
with the cylindrical flattening map;

C: the iterative heat kernel smoothing described in Churad. ¢2005).

Since iterative heat kernel smoothing is not designed ®iriblusion of covariates, this simula-
tion study does not include covariates. The three methadsampared on four tubular domainsiz
three test domains and a real geometry of an internal camatey from the AneuRisk dataset;
see Figure 4. Since the spatial regression model over ptimmaains is combined with the cylin-
drical flattening map, we consider an artery geometry thasdmt present an aneurysm; in fact
the cylindrical map is not suited to deal with large aneusisaa multiple points on the wall of
the carotid artery would be mapped to the same point in theepla 425

To compute the cylindrical flattening map, we consider thetedine of the tubular domain,
which for simplicity is assumed known, this being the cagetlie AneuRisk data. Then, each
pointz = (z1], zjg, Z|3)) ON the non-planar domainis associated with the closest point on the
centerline. Hence, it is possible to consider the cyliralrarameterization defined By, r, 6),
wheres is the curvilinear abscissa computed along the centertifgethe artery radius, i.e., theus
distance between and the associated centerline point, @nslthe angle in radians identified by
x with respect to the curvilinear abscissa. The cylindricattdéining map thus changEdnto the
rectangle(s, O R), where R is the average radius. Analogously to the spatial regressiodel
over non-planar domains, the necess@yR)-periodicity of the estimate along the coordinate
6 R can be guaranteed either by repeating the data values atrtteeabscissas but with ordinatess
(6 + 27)R and (6 — 27) R, or by imposing periodic boundary conditions. Both apprescare
implemented, and the same is done for the spatial regressgmon-planar domains. Finally,
for these methods the optimal value of the smoothing pammas selected at each simulation
replicate and for each domain by generalized cross vatidati

Iterative heat kernel smoothing has been developed foromaaging applications, to dealuo
with very complex domain geometries such as the corticdhsarof the brain, which is usually
approximated by three-dimensional meshes with moreth&nodes. This smoothing algorithm
aims at reducing the computational burden associated with geometries and works directly
on the mesh without any flattening. To do this, the Laplacér@ai eigenvalue problem is
solved directly o, i.e., ordered eigenvalués= )y < \; < --- and the corresponding eigenas
functionsgy, ¢1, . . . are found by solving the eigenvalue problem\r¢; = A¢; onI'. Thus, the
heat kernel with bandwidthis constructed from the eigenvalue-eigenfunction péirs;, ¢;)}
ask(p,q) = E;";O e‘Ajthj (p)o;(q), wherep andq are two generic points ofi. The heat ker-
nel smoothing ofz; is given by K, x z; = Z;‘;O e‘AJtﬁj(xi)qu(xi), where 3;(z;) = (2, ¢4).
In practice, onlyk eigenvalue-eigenfunction pairs are chosen via an iterasgidual fitting al- 4o
gorithm. For our simulations, we made a heuristic choice ddgding the bandwidth with the
best performance after some test runs. In particular, weset0—3. To determine the level of
smoothing, the optimal number of iterations is selecte@fmh simulation replicate and for each
domain via the F-test criterion outlined in Chung et al. 00
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Fig. 4. Simulation study. Top: colormap of a test functiomeated by (21) on four tubular domains; the fourth one isah re
geometry of an internal carotid artery from the AneuRislkadat. Middle: data with noise. Bottom: estimates providgthle
spatial regression model over non-planar domains. Theroalp range is optimized for each geometry, magenta to green
(min,max); Geometry 1: (-4.06,6.06); Geometry 2: (-0.7892; Geometry 3: (-5.14,7.17); Geometry 4: (-2.09,4.10).

Fig. 5. Box plots of the mean square errors for the three astirs over fifty simulations. A: spatial regression over-piamar
domains; B: spatial regression over planar domains, coaabivith cylindrical flattening; C: iterative heat kernel sotiung.
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We generate data as follows. Over each non-planar test dpmvaiconsider fifty test func- sss
tions, having the form

f(@p)s 29, 2)3) = a1 sin(2mzpy)) + azsin(27xpg)) + agsin(2mr3) + 1, (21)

with coefficientsa; (j = 1,2,3) randomly generated from independent normal distribgtion
with mean and standard deviation equal to one. For each dgegniiee data locations;,

(i =1,...,n) coincide with the nodes of the three-dimensional mesh tsegproximate the
domain; see, e.g., Figure 2, top left, for the triangular masproximating Geometry 2. NOiSYuso
data values are obtained, in accordance with the modelyfBdding independent normally dis-
tributed errors with mean zero and a standard devidliérat each of the data locations. For
each geometry, the top row of Figure 4 shows an example oft futestion generated by (21),
the middle row shows the corresponding level of noise, aadtitom row shows the associated
estimate by the proposed spatial regression model. Theefiidénce of the good performancess
of the proposed method is provided by a visual comparisowdst each test function and the
corresponding estimate. The colormaps are obtained bgrlimeerpolation of the data at;,
using Matlab code of Chung et al. (2005).

For each simulation replicate and test domain, we comp@teniban square error of the es-
timator associated with each of the three different methBagire 5 shows that the spatial rez
gression model over non-planar domains yields better agtgnwith a smaller variance. Pair-
wise Wilcoxon tests confirm that the mean square errors oé#ienators obtained by spatial
regression model over non-planar domains are stochagtioaler than those associated with
the competitor methods, with p-values of the order® to 10~8 for the comparison with the
spatial regression model over planar domains and p-valtiteerder10~2 to 1071 for the s
comparison with iterative heat kernel.

The results shown for the regression model over non-plaoaraths correspond to the ap-
proach imposing periodic boundary conditions. No sta@dlly significant difference is found
between these estimates and those obtained with the appbazed on the repetition of the
domain and data, and likewise for the regression modelsplgaar domains. Nevertheless, theo
periodic boundary conditions lead to a computationally erefficient method. For instance, with
reference to Geometry 3, characterized by 1648 nodes, Htalspegression model over non-
planar domains takes a total of 12s to fit the test data in Eiguwhen using periodic boundary
conditions, 11s for flattening the mesh and less than 1s tordfithe data, and 16s with data
repetition. For the same geometry and data, spatial régressodel over planar domains takess
2s with periodic boundary conditions, 1s for flattening aesklthan 1s for fitting, and 16s with
data repetition. The shorter times taken by the model oargsldomains do not account for the
computation of the centerline, which for simplicity is hemnsidered as already known. Finally,
iterative heat kernel smoothing takes 44s for fitting theesdata. The simulations were run with
Matlab 7.12.0 on 2 GHz Intel Core i7 processor in a MacBook With a 256GB Solid State 4o
hard drive.

The Supplemetary Material extends this comparative stody technique based on tensor
product of univariate smoothing splines, illustrating #fivantages of the methods considered in
this section with respect to a smoothing technique thattisowstrained over the manifold. The
Supplemetary Material also offers a simulation study wiliasiates. 405

6. APPLICATION TO HEMODYNAMIC DATA

In this section, we apply the non-planar spatial regressioodel to the AneuRisk
data. The AneuRisk projedh{t ps://stati stics. nox. polim.it/aneurisk/ and
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http://ecn?. mat hcs. enory. edu/ aneuri skweb/ i ndex) gathered researchers of

scientific fields from neurosurgery and neuroradiology &istics, numerical analysis and bio-

engineering, with the aim of studying the pathogenesis télral aneurysms. Aneurysms are
deformations of the vessel wall. The formation of an aneurigsusually ascribed to the complex

interplay between the biomechanical properties of artaalfsrand the effects of hemodynamic

forces exerted on the vessel walls, such as wall shear stnégzressure. These forces in turn de-
pend on the vessel morphology itself; exploring the retetiops between the vessel morphology
and the hemodynamics was one of the main goals of the AneyiRighct.

Here, we analyze hemodynamic data on the real internalidaaotery displayed in Fig-
ure 1(a), and we study its relationship with local vesselphology. Iterative heat kernel smooth-
ing cannot be implemented in this study, as it cannot yetatcfor space-varying covariates,
while the cylindrical map for the planar spatial regressioodel cannot be implemented due
to the large aneurysm. The hemodynamic quantities of isteseich as wall shear stress and
pressure, are computed via computational fluid dynamicsilaiions over the real anatomy
(Passerini et al., 2012). The inner carotid artery geomistoptained via the reconstruction al-
gorithm coded in the Vascular Modeling ToolKit, from thréerensional angiographic images
belonging to the AneuRisk data warehouse (Piccinelli e28109). Figure 1(a) shows the mod-
ulus of the simulated wall shear stress (dyrd¥mat the systolic peak on the three-dimensional
geometry. Figure 1(b) shows the three-dimensional trilemgmesh approximating the artery.
Each triangle vertex in this mesh coincides with a data lonat;, at which the wall shear stress
and covariates describing the local morphology are medsuecording to the approach pro-
posed in this paper, the three-dimensional triangular nedlattened via the conformal map
described in Section-3 to create the planar triangulation in Figure 1(c). Thesulghe planar
triangulation labeled inflow and outflow correspond to theropnds of the carotid artery. The
sides indicated by dashed lines correspond to the longilidiut along the artery wall, con-
necting the open boundaries of the artery. To maintain thiedleity of the solution we impose
periodic boundary conditions on these sides. The aneurysimrejor curves of the artery are
recognizable also in the flattened domain. In particula,atea of the mesh which is very fine
and close to the outflow side corresponds to the aneurysmal sa

To explore the relationship between the wall shear stredstfan local morphology of the
artery, we consider the following space-varying covasatle local curvature of the vessel wall,
the curvature of the artery centerline and the local radiuth® vessel. The wall shear stress
obtained via the numerical simulations depends on the aamtbiree-dimensional geometry
of the carotid, and thus also implicitly on the simple geainefeatures that we consider as
covariates, although the form of such relationship is arptinclear. Hence, we aim to explore
the form of this relationship and to understand to what extiemse geometric features can be
considered a good summary of the three-dimensional arterpmlogy. The local curvature of
the vessel wall is calculated from the three-dimensionadmand varies between20.63 cm*
and 36.46 cm~!. The curvature of the vessel centerline identifies the cureadf the whole
vascular geometry. The artery centerline and its curvattgecomputed as described in Sangalli
et al. (2009b). In particular, to measure the centerlingature at each point on the vessel wall
we refer to the curvature at the associated centerline .pbim& centerline curvature varies from
0.05 cm~! to 4.64 cm™!. Finally, the local radius of the vessel is measured as thardis from
the artery wall to the associated centerline point, andesufiggm0.14 cm t00.43 cm.

Figure 1(d) and (e) display the wall shear stress estimageith& non-planar spatial regression
model including the covariates, far= 10%-. The planar view in Figure 1(d) allows us to see the
entire geometry without rotating the figure, thus makingaaref interest easier to highlight. We
recognize large areas of high wall shear stress, in comegmee with the neck of the aneurysm
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and along the first major bend of the carotid syphon, thusligigfing the sensitivity of the wall
shear stress with respect to the complex geometry of theyaNetice in particular the sharp
spatial change in the wall shear stress values, from thehighyvalues at the aneurysmal neck
to the very low values in correspondence with the aneurysaet. These sharp changes in wadl
shear stress are conjectured to be very dangerous for theyaneal pathology and its evolution.
The estimated covariates effects aie= —0.99 dyn cm with a standard error 6f03 dyn cm

for the local curvature of the vessel wall, = 0.35 dyn cm with a standard error 6f11 dyn cm

for the curvature of the artery centerline, afyl= —7.834 dyn/cm with a standard error 6f13
dyn/cm for the local radius. Hence, the local curvature efvhssel wall and the local radiusss
are negatively associated with the wall shear stress, \Hélartery centerline curvature is posi-
tively associated. This supports clinical intuition abthé effect of the local vessel morphology,
and is consistent with hemodynamical studies in simplifiedrgetries. As expected, the most
influential factor for the wall shear stress is the local uadiThese preliminary findings will be
further investigated in future work, with statistical ays$ across patients. An important advans
tage of the non-planar spatial regression model approattraigpatient-specific estimates can
all be mapped into a common planar domain where, after deitalistration among patients,
comparisons across patients are possible.

On the computational side, there is also a possibility teestihe estimation problem in (2)
directly on the non-planar domain, without resorting to #iélsing map. This would probably ses
lead to computational savings, although mapping the ettsria a reference domain is still of
interest, allowing for more direct comparisons acrosedifit geometries.
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