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SUMMARY

We propose a regression model for data spatially distributed over general two-dimension-10

al Riemannian manifolds. This is a generalized additive model with a roughness penalty term
involving a differential operator computed over the non-planar domain. Owing to a semi-
parametric framework, the model allows the inclusion of space-varying covariate information.
Estimation can be performed by conformally parameterizing the non-planar domain and then by
generalizing existing models for penalized spatial regression over planar domains. The confor-15

mal coordinates and the estimation problem are both computed by a finite element approach.

Some key words: generalized additive model; partial differential regularization; penalized regression; smoothing on
manifolds.

1. INTRODUCTION

1·1. Motivation 20

We consider smoothing data distributed over general non-planar two-dimensional domains,
and more generally regression for data distributed over non-traditional surface domains. The
applied problem driving this research is the study of hemodynamic forces, such as shear stress
and pressure, exerted by blood-flow on the wall of an internal carotid artery. The data used in
this study are part of the AneuRisk project, a scientific endeavor that investigated the role of25

vessel morphology, blood fluid dynamics and biomechanical properties of the vascular wall in
the pathogenesis of cerebral aneurysms; see Passerini et al. (2012) and Sangalli et al. (2009a).
Figure 1(a) shows an internal carotid artery affected by an aneurysm, a deformation of the vessel
characterized by a bulge of the vessel wall. The shear stress exerted by the blood flow on the
wall of the artery, at the systolic peak, is represented by a colormap. Each value refers to a30

point (x[1], x[2], x[3]) on the bi-dimensional and non-planar artery wall. Within the AneuRisk
project, these data have been analyzed by simplifying the three-dimensional artery to a cylinder.
A bijective cylindrical map, which implicitly fixes the radius to a constant and does not account
for the curvature of the vessel, is used to flatten the artery wall; standard spatial methods are then
applied in the resulting planar domain. Though very convenient from an analytical point of view,35

this approach is inaccurate, since the radius and curvature of the vessel are geometrical quantities
that greatly influence the hemodynamics in an artery, and are shown to be discriminating factors
of aneurysm presence and location (Sangalli et al., 2009a). Moreover, this approach is not able
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Fig. 1. A visual illustration of the method. (a): Shear stress (dyn/cm2) exerted by blood flow on the wall of an internal carotid artery
affected by an aneurysm. The colormap shows the modulus of the wall shear stress at the systolic peak. The colormap rangesfrom
0 dyn/cm2 (white) to 180 dyn/cm2 (red). (b): A triangular mesh reconstruction of the wall of the internal carotid artery in (a). (c):

Planar triangular mesh generated by a conformal flattening of the mesh in (b). (d): Solution to equivalent estimation problem
solved on the planar domain in (c). (e): Solution to estimation problem mapped back to the original manifold domain.

to consider vessels affected by a large aneurysm, as in Figure 1. For these types of domain
geometries it is impossible to define a bijective cylindrical map unless the aneurysmal sac is40

removed. This suggests the development of an approach able to take into account the geometry
of the domain. In addition, we also want to include the local vessel geometry as space-varying
covariate information to better explore the relationship between the morphological features of
the vessel and the hemodynamics.

Non-planar domains are usually approximated by three-dimensional triangular meshes char-45

acterized by varying distances and angles between neighbouring vertices. Figure 1(b) displays
an example of a triangular mesh that approximates the arterywall in Figure 1(a). Few methods
are available to deal with data on non-planar domains. Iterative schemes for nearest neighbor av-
eraging have been developed to work on surface meshes (Hagler et al., 2006). In this approach,
the value of the variable of interest at each vertex of the mesh is obtained by averaging the values50

at the neighboring vertices. This process is repeated several times to create a smoothing effect.
A more sophisticated method, heat kernel smoothing, is presented, e.g., in Chung et al. (2005).
This is a geodesic distance-based kernel smoothing approach for non-planar domains. How-
ever, neither nearest neighbor averaging nor heat kernel smoothing is well-suited for our applied
problem, as they are not designed to include space-varying covariates. Among the other models55

devised to handle data over non-planar domains we cite the approaches devoted to specific types
of Riemannian manifolds such as spheres, hyperspheres, e.g., the spherical splines introduced
in Wahba (1981) and Baramidze et al. (2006), the models described by Jun & Stein (2007), Jun
(2011) and Gneiting (2013), and methods that work on more general sphere-like domains, e.g.,
those of Alfeld et al. (1996) and Lindgren et al. (2011).60

In this paper we propose a regression method that efficientlyhandles data distributed over
general two-dimensional Riemannian manifolds and also includes space-varying covariate in-
formation, generalizing the work of Ramsay (2002), Sangalli et al. (2013) and Azzimonti et al.
(2014b) to the case of non-planar domains. The resulting estimators are linear in the observed
data values and have a penalized regression form. Moreover,the proposed model has a high com-65
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putational efficiency, thanks to the use of scientific computing techniques and in particular of the
finite element approach. The excellent performance of the proposed methodology is shown by
simulation studies on both test domains and domains from real artery geometries. The proposed
models have important fields of application not only in the medical sciences, but also in the
geosciences, environmental sciences and engineering. 70

1·2. The model
Considern fixed data locations{xi = (xi[1], xi[2], xi[3]) : i = 1, . . . , n} lying on a non-planar

domainΓ that is a surface embedded inR3. For each locationxi, a real-valued random variable
of interest,zi, is observed. We assume the model

zi = f(xi) + ǫi (i = 1, . . . , n) (1)

where ǫi are independent errors with zero mean and constant varianceσ2, and f is a twice 75

continuously differentiable real-valued function definedon the surface domainΓ.
To estimate the functionf in (1), we propose to minimize a penalized sum of squared error

functional, with a roughness penalty involving a differential operator computed overΓ. In par-
ticular, we generalize to manifold domains the spatial regression models over planar domains
in Ramsay (2002) and Sangalli et al. (2013), where the roughness penalty involves the standard80

Laplacian of the function to be estimated. In detail, let us consider a surfaces = s(u[1], u[2])
defined on a planar domainΩ, with u = (u[1], u[2]) a generic point inΩ. Denote the gradi-

ent of s by ∇s(u) =
(

∂s/∂u[1](u), ∂s/∂u[2](u)
)T

, whereT is the transpose operator. More-

over, given a vector fieldv(u) =
{

v[1](u), v[2](u)
}T

on Ω, define the divergence of the vector
field as divv(u) = ∂v[1]/∂u[1](u) + ∂v[2]/∂u[2](u). Then, the Laplacian of the surfaces is de- 85

fined as∆s(u) = div{∇s(u)} = ∂2s/∂u2[1](u) + ∂2s/∂u2[2](u). The Laplacian∆s provides a
simple measure of the local curvature of the surfaces and is invariant with respect to rigid
transformations of the spatial coordinates ofΩ. The generalization of the Laplacian to functions
f = f(x[1], x[2], x[3]) defined on a non-planar domainΓ, with x = (x[1], x[2], x[3]) ∈ Γ, requires
the computation of the gradient operator∇Γ and of the divergence operator divΓ associated with 90

Γ (see, e.g., Dierkes et al., 2010, and Section 2). It is thus possible to define the Laplace–Beltrami
operator off , represented by∆Γf(x) = divΓ∇Γf(x). Similarly to the standard Laplacian, the
Laplace–Beltrami operator provides a simple measure of thelocal curvature of the functionf,
and is invariant with respect to rotations, translations and reflections of the spatial coordinates of
Γ. Thus, the use of the Laplace–Beltrami operator in a roughness penalty ensures that the degree95

of smoothness does not depend on the orientations of the coordinate system or of the domainΓ.
As a consequence, we propose to estimatef by minimizing the functional

JΓ,λ(f) =
n
∑

i=1

{zi − f(xi)}
2 + λ

∫

Γ
{∆Γf(x)}

2 dΓ (2)

whereλ is a positive smoothing parameter; the higherλ is, the more we control the roughness
of f , the smallerλ is, the more we allow flexibility to fit the local curvature off . The Laplace–
Beltrami operator is also used by heat kernel smoothing, although in a different framework, as100

detailed in Section 5. The spherical splines introduced in Wahba (1981), Alfeld et al. (1996)
and Baramidze et al. (2006) consider the same penalized sum of squared errors functional in
(2), or similar functionals where the Laplace–Beltrami operator is replaced by other differential
quantities.
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In this paper, we present a solution to the estimation problem (2) that combines tools from105

differential geometry, analysis and scientific computing.The key idea is summarized in Figure 1.
We first conformally parameterize the non-planar domainΓ, so that we can conformally flatten
Γ into a planar domain; see Figure 1, (b) to (c). In particular,the conformal parametrization
allows us to reformulate the estimation problem (2) over a planar domainΩ, by providing an
appropriate change of variable from the surface domainΓ to Ω. This leads to an estimation110

problem overΩ where the geometry of the original domainΓ is appropriately accounted for.
In this new setting, the problem is solved by generalizing spatial regression models over planar
domains; see Figure 1(d). From a computational viewpoint, we use finite elements to compute the
conformal flattening map and to solve the equivalent estimation problem on the planar domain;
see Figure 1, (b) to (d). Finally, by properly exploiting theconformal map betweenΓ andΩ, we115

are able to provide the estimator over the original non-planar domain; see Figure 1, (d) to (e).
The proposed model has been implemented in R and Matlab.

2. FORMULATING EQUIVALENT ESTIMATION PROBLEM ON A PLANAR DOMAIN

2·1. Conformal parametrization
We consider a non planar domainΓ that is a two dimensional Riemannian manifold. We120

assume in the sequel thatΓ admits a global parametrization

X : Ω → Γ

u = (u[1], u[2]) 7→ x = (x[1], x[2], x[3]),
(3)

whereΩ is an open, convex and bounded set inR
2 and the boundary∂Ω of Ω is sufficiently regu-

lar. The mapX provides a change of variable between the planar coordinatesu = (u[1], u[2]) and
the non-planar coordinatesx = (x[1], x[2], x[3]). Such global parametrizations are available for a
large class of bidimensional manifolds, including surfaces with self-intersections and holes and125

other non-trivial geometries; see, e.g., Gu & Yau (2003). Inparticular, global parametrizations are
available for all the geometries considered throughout thepaper. Our goal is to useX to rewrite
the estimation problem (2) over a planar domainΩ; see Figure 1, (a) to (d). Consider the first
order partial derivatives ofX with respect to the planar coordinatesu[1] andu[2], ∂X/∂u[1](u)
and∂X/∂u[2](u), which are column vectors inR3. Let 〈·, ·〉 denote the Euclidean scalar prod-130

uct of two vectors and‖ · ‖ the corresponding norm. Then, the mapX is said to be conformal
if
∥

∥∂X/∂u[1](u)
∥

∥

2
=

∥

∥∂X/∂u[2](u)
∥

∥

2
and 〈∂X/∂u[1](u), ∂X/∂u[2](u)〉 = 0, for anyu ∈ Ω.

Such maps are unique up to dilations, rotations and translations; see, e.g., Hurdal & Stephenson
(2009). They preserve angles and the most important geometrical features of the domain. The
use of a mapX with these properties allows us to obtain a simplified version of the estimation135

problem.
To rewrite problem (2) onΩ, we consider the Jacobian matrix ofX, defined as∇X(u) =

{

∂X/∂u[1](u), ∂X/∂u[2](u)
}

, for u ∈ Ω; this matrix has maximal rank equal to two. Using
the Jacobian, we define the symmetric positive definite matrix

G(u) = ∇X(u)T∇X(u) =





∥

∥

∂X
∂u[1]

(u)
∥

∥

2
〈 ∂X
∂u[1]

(u), ∂X
∂u[2]

(u)〉

〈 ∂X
∂u[1]

(u), ∂X
∂u[2]

(u)〉
∥

∥

∂X
∂u[2]

(u)
∥

∥

2



 u ∈ Ω.

The matrixG(u) is the space-varying metric tensor associated with the mapX: for any pointu140

in the planar domainΩ, G(u) describes the local geometry of the non-planar domainΓ, at the
corresponding pointx = X(u). The determinant ofG(u) is strictly positive; in particular, there
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exists a positive constantη such that, for anyu ∈ Ω, D(u) = det{G(u)}1/2 ≥ η. The quantity
D(u) identifies the elemental area involved in the change of variable from the original non-planar
coordinatesx ∈ Γ to the planar coordinatesu ∈ Ω, i.e,dΓ = D(u)dΩ. Finally, we introduce the 145

matrix K(u) = D(u)G−1(u), which is also symmetric positive definite for anyu ∈ Ω, since
D(u) is positive and the inverse metric tensorG−1(u) is symmetric and inherits positive defi-
niteness fromG(u).

After setting the geometrical framework, we now focus on thefunction f to be estimated in
model (1). By exploiting the mapX, instead of the functionf(x) defined on the manifoldΓ, we 150

can consider the functionf ◦X(u) = f{X(u)} defined over the planar domainΩ. The function
f ◦X provides a planar parametrization off . Owing to the regularity assumptions onf and
X, f ◦X ∈ C2(Ω̄). Using the mapX, theΓ-gradient off can be parametrized in terms of the
planar coordinatesu as∇Γf(x) = ∇X(u) G−1(u)∇f{X(u)} ∈ R

3, for anyx ∈ Γ and with
u = X−1(x), where∇f{X(u)} denotes the standard gradient onΩ defined in Section 1·2; see, 155

e.g., Dierkes et al. (2010). Similarly, theΓ-divergence of a vector fieldv =
{

v[1](x), v[2](x)
}T

,
defined on the non-planar domainΓ, can be parametrized in terms of the planar coordinatesu as
divΓv(x) = D(u)−1

[

∂/∂u[1]
D(u)v[1]{X(u)} + ∂/∂u[2]

D(u)v[2]{X(u)}
]

. Hence, the Laplace–
Beltrami operator can be re-expressed in terms of the planarcoordinatesu as

∆Γf(x) = divΓ
[

∇Γf{X(u)}
]

=
1

D(u)
div

[

K(u)∇f{X(u)}
]

, (4)

where div denotes the standard divergence operator overΩ defined in Section 1·2. Thus, by 160

exploiting (4), after settingui = X−1(xi), we can reformulate the estimation problem (2) over
the manifoldΓ as an equivalent problem over the planar domainΩ as follows: find the function
f ◦X, defined onΩ, that minimizes the functional

JΩ,λ(f ◦X) =

n
∑

i=1

[

zi − f{X(ui)}
]2

+ λ

∫

Ω

1

D(u)

(

div
[

K(u)∇f{X(u)}
]

)2
dΩ. (5)

Problem (5) can be considered as a generalization of the estimation problem for spatial regression
models over planar domains in Ramsay (2002) and Sangalli et al. (2013) to a more complex 165

setting, characterized by the presence of the quantitiesK(u) andD(u) in the roughness penalty
term. These quantities appropriately account for the geometry of the original manifoldΓ. As
previously remarked, the mapX and its corresponding planar domainΩ are not unique; see
Section 2·3. However, the termsK(u) andD(u) adjust for each mapX considered and for the
corresponding planar domainΩ. This leads to different planar parameterizations of the function 170

f, as well as of the estimation problem (5), but all equivalent to problem (2) on the original
manifoldΓ.

In the special case of a conformal mapX, we obtain a simplified estimation problem
over Ω. In fact, for a conformal map we haveD(u) =

∥

∥∂X/∂u[1](u)
∥

∥

2
, G(u) = D(u)I2,

G−1(u) = D(u)−1I2 andK(u) = I2, whereIm is the identity matrix of orderm. The Laplace– 175

Beltrami operator (4) also simplifies to∆Γf{X(u)} = D(u)−1∆f{X(u)}, where∆ is the stan-
dard Laplace operator defined onΩ. Thus, the estimation problem (5) simplifies to finding the
functionf ◦X, defined onΩ, minimizing the functional

JΩ,λ(f ◦X) =

n
∑

i=1

[

zi − f{X(ui)}
]2

+ λ

∫

Ω

[

D(u)−1/2∆f{X(u)}
]2
dΩ. (6)
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2·2. Characterization of the estimation problem on the planar domain
We hence characterize the solution to the estimation problem (5) on the planar domain;180

see Figure 1(d). We have to introduce a suitable function setting. Consider the Sobolev space
Hm(Ω), i.e., the space of the functions which belong toL2(Ω) along with all their distribu-
tional derivatives up to the orderm (Lions & Magenes, 1973). Here we propose a variant of the
function spaceHm(Ω) given by the spaceHm

n0,K(Ω) =
{

h ∈ Hm(Ω) : νTK∇h = 0 on∂Ω
}

⊂ Hm(Ω), consisting of theHm(Ω)-functions with normal derivativeνTK∇h identically equal185

to zero on the boundary∂Ω, whereν is the unitary outward vector normal to∂Ω. The re-
quested condition on the derivative is equivalent to the condition that the normal derivative
on the boundary ofΓ vanishes. The functionalJΩ,λ(f ◦X) in (5) is well-defined since, for
(f ◦X) ∈ H2(Ω), the roughness and sum of squared errors terms are well-posed, owing to the
inclusionH2(Ω) ⊂ C0(Ω̄) that allows for pointwise evaluation off ◦X. The boundary condi-190

tions inH2
n0,K(Ω) ensure uniqueness of the solution to the estimation problem; see the Supple-

mentary Material.
Let z = (z1, . . . , zn)

T be the vector collecting the observed values in (1) for the quantity of
interest. For any functionh defined onΓ, such thath ◦X is defined onΩ, we denote the column
vector of evaluations of the functionh at then data locationsxi by195

hn =
[

h(x1), . . . , h(xn)
]T

=
[

h{X(u1)}, . . . , h{X(un)}
]T
. (7)

To simplify the notation, in the following we suppress the dependence onu. The following
proposition states that the estimation problem is well posed and characterizes the estimator.

PROPOSITION1. The estimator̂f ◦X that minimizes (5) overH2
n0,K(Ω) satisfies the relation

qTn f̂n + λ

∫

Ω

1

D
div

{

K∇(q ◦X)
}

div
{

K∇(f̂ ◦X)
}

dΩ = qTnz (8)

for any functionq defined onΓ such thatq ◦X ∈ H2
n0,K(Ω), with qn and f̂n defined according

to (7). Moreover, the estimator̂f ◦X exists and is unique.200

For any fixed mapX, Proposition 1 establishes the existence and uniqueness ofthe solution
to the estimation problem (5) onΩ. Since, as shown previously, this problem is equivalent to
the estimation problem (2) onΓ, Proposition 1 also guarantees existence and uniqueness of the
solution to (2). Its proof is given in the Supplementary Material.

2·3. Conformal flattening of non-planar domains205

In this section we describe how the mapX and the corresponding planar domainΩ are de-
termined; see Figure 1, (b) to (c). Conformal parameterizations, a very active area of research,
are extensively used in graphics in a variety of applications from re-meshing to texture mapping.
For surfaces without self-intersections and holes, the approaches for approximating a conformal
parameterization fall into two categories: harmonic energy minimization (Angenent et al., 1999)210

or circle packing (Hurdal & Stephenson, 2009). Here, we employ the first approach. Since the
application considered in this paper features domains topologically equivalent to a cylinder, we
adopt the method for flattening tubular surfaces developed in Haker et al. (2000). We describe
the construction of the conformal mapX for a tubular surface with the help of the example in
Figure 2. A tubular surfaceΓ has the same topology as an open ended cylinder and is embedded215

in R
3. The open ends of the cylinder, denoted byb0 andb1, represent the boundary ofΓ and are

homeomorphic to a circle. With these assumptions,Γ is conformally equivalent to a rectangle in
R
2.
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Fig. 2. Example of conformal flattening. Top left: three-dimensional triangular mesh approximating a non-planar test domain. Top
center: the oriented boundaryB. Top right: the annulus generated by the flattening procedure. Bottom left: the planar triangulated

domain obtained as a final product of the conformal flatteningof the test domain. Bottom right: colormap of the quantityD(u)

associated with the conformal flattening map.

The mapX in (3), having the conformal properties, is identified by thesolution(u[1], u[2]) of
two coupled differential problems defined on the original manifold Γ. In particular, the mapX is 220

calculated in two steps, the first providing the conformal coordinateu[1] and the second providing
the conformal coordinateu[2]. In particular, the coordinateu[1] is determined by solving











−∆Γu[1] = 0 onΓ,

u[1] = 0 on b0,

u[1] = 1 on b1.

(9)

To define the differential problem identifying the coordinate u[2], let us cut the surfaceΓ along
a curveC that runs fromb0 to b1 such thatu[1] is strictly increasing alongC; see Figure 2, top
left. The maximum principle ensures the existence of such a cut (Lions & Magenes, 1973). The225

cut is not uniquely determined; Section 3·2 explains how to avoid any influence of the cut on
the estimation problem. The boundariesb0 and b1, together with the cutC, form an oriented
boundary, denoted byB, which circles aroundb0, then alongC, aroundb1, and finally back
downC in the opposite direction. Thus, the boundaryB is a closed curve whose direction is
determined by the orientation of the surface; see Figure 2, top center. At this point, we defineu[2] 230

as the solution to the differential problem
{

−∆Γu[2] = 0 onΓ

u[2](̺) =
∫ ̺
̺0

∂u[1]

∂ν ds onB,
(10)

where̺0 ∈ b0 is a designated starting point of the boundaryB, ̺ ∈ B, ∂u[1]/∂ν is the normal
derivative ofu[1] andds denotes the arc-length element alongB.

The combined effect of problems (9) and (10) is visualized inFigure 2. The top left panel
shows a three-dimensional tubular test surface approximated by a triangular mesh. The boundary235

B is highlighted in red and its orientation is shown in Figure 2, top center. The annulus generated
during the flattening procedure is shown in Figure 2, top right. This annulus hasb0 as inner
boundary, not clearly visible in the figure, andb1 as outer boundary. The rectangle generated at
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the end of the flattening is shown in Figure 2, bottom left, andit is enclosed by the red lines that
correspond to the boundaryB in Figure 2, top center. Moreover, the rectangular planar domain240

is properly scaled to maintain the same proportion as the original surface, i.e., the height of the
rectangle is set to2π/|C|, where|C| is the length of the cut.

3. COMPUTATION OF THE CONFORMAL MAP AND OF THE ESTIMATOR

3·1. Finite Elements
Problems (9)–(10) describing the conformal mapX and problem (8) characterizing the es-245

timator f̂ ◦X are infinite-dimensional and cannot be solved analytically. A standard approach
consists of recasting them into a finite-dimensional function space that approximates the original
infinite-dimensional space. Then, the problem is solved in the finite-dimensional space, normally
by exploiting a finite-dimensional basis spanning it. In particular, since (9)–(10) and (8) involve
partial differential operators, we resort to finite elementspaces and the associated basis. The250

finite element method is widely used in engineering applications to deal with problems involv-
ing partial differential equations (Gockenbach, 2006; Quarteroni, 2014). Finite elements are a
generalization of the widely-employed univariate spline functions, even though finite elements
are usually less regular than splines. Similarly to univariate splines, finite elements partition the
domain of interest, either planar or non-planar, into subdomains. Then, the solution is approxi-255

mated via a globally continuous function which coincides with a polynomial of a certain degree
on each subdomain, i.e., a piecewise polynomial. In particular, analogously to the basis for uni-
variate splines used to describe piecewise polynomial curves, the finite element basis is used to
describe piecewise polynomial surfaces. The use of finite elements makes problems (9)–(10) and
(8) numerically tractable and reduces them to linear systems.260

Convenient domain partitions, in both the planar and non-planar settings, are provided by
triangular meshes. Figure 1(b) and (c) and Figure 2 show examples of both non-planar and planar
triangular meshes. In the triangulation, two adjacent triangles share either a vertex or a complete
edge and the union of all the triangles provides an approximation for the whole domain. The
boundary of the domain and any interior hole are representedby the polygon generated by the265

outer edges of the triangulation. In the simulations and applications considered in this paper the
vertices of the non-planar mesh coincide with the data location pointsx1, . . . , xn, so that the
conformal flattening provides a planar mesh withn vertices coinciding with the corresponding
data locationsui = X−1(xi) on the planar domain. Below we consider the general case where
mesh vertices and data locations do not necessarily coincide.270

Starting from a triangulationT of a non-planar or planar domain, we can introduce a locally
supported finite element basis that spans the space of the piecewise polynomials overT . This fi-
nite element space, denoted byH1

T
, discretizes the infinite-dimensional spaceH1. In this paper,

we use linear finite elements where each basis functionψj is associated with a triangle vertex
ξj (j = 1, . . . , N). The basis functionψj coincides with thejth hat function, a piecewise linear275

polynomial which assumes the value one at the vertexξj and the value zero on all the other
vertices of the mesh, i.e.,ψj(ξl) = δjl, whereδjl denotes the Kronecker delta symbol. Figure 3
shows an example of a linear finite element basis function on non-planar and planar triangula-
tions. The locally supported nature of the basis functionsψj is evident.

Now, letψ = (ψ1, . . . , ψN )T be the column vector collecting theN basis functions associated280

with theN verticesξj (j = 1, . . . , N). Then, each functionh in the finite element spaceH1
T

can be represented as an expansion in terms of the basis function ψ1, . . . , ψN . In particular,
h(·) =

∑N
j=1 h(ξj)ψj(·) = hTψ(·), whereh = {h(ξ1), . . . , h(ξN )}T is the column vector of the
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Fig. 3. Colormap of a linear finite element basis on a non-planar (left) and on a planar (right) triangulation.

evaluations ofh on theN vertices of the mesh. Each functionh ∈ H1
T

is thus uniquely identified
by its evaluations on the mesh vertices. 285

The finite element spaceH1
T

is characterized by less regularity with respect to the spaces
involved in (9)–(10) and (8) which are subsets ofH2. This will lead us to provide an equivalent
formulation for problems (9)–(10) and (8) in a suitable subset of the spaceH1, that only involves
first order partial derivatives; see (11) and (12), respectively.

3·2. The finite element computation of the flattening map 290

To compute the conformal coordinates in (9)–(10) we approximate both coordinatesu[1] and
u[2] with functionsH1

T
(Γ), which are globally continuous and coincide with a linear polyno-

mial over each triangle of the non-planar meshΓT approximating the manifoldΓ. To obtain an
equivalent formulation of problems (9)–(10) suited for this finite element discretization we use a
classical result stating thatu[1] in (9) is the minimizer of the energy functional 295

E(u[1]) =
1

2

∫

Γ
‖∇Γu[1]‖

2dΓ (11)

and the same result applies tou[2] in (10) (Haker et al., 2000; Dierkes et al., 2010). This reformu-
lation reduces the regularity assumptions onu[1] andu[2] with respect to the original problems
(9)–(10) requiringu[1], u[2] ∈ H2(Γ). Now the problem is well defined in the spaceH1(Γ),
which can be approximated with the finite element spaceH1

T
(Γ).

The conformal flattening method maps the non-planar triangular meshΓT , that approximates 300

the surface domainΓ, to a planar triangulationΩT of Ω, without flipping or breaking any of
the triangles; see Figure 1, (b) to (c). Moreover, this map provides the termsK(u) andD(u)
associated with the mapX. The computation of these terms, together with the planar meshΩT ,
conveniently set up the planar estimation problem (8) to be solved via planar finite elements, as
detailed in the following section. The Supplementary Material furnishes more details. 305

Remark1. The conformal rectangular domain has two artificial boundaries, generated by the
cut, denoted byC andC ′; see Figure 2, bottom left. There are two alternative approaches to
ensure the necessary periodicity of the estimate off along this artificial cut. The first approach
consists in repeating the planar triangulation and the corresponding data values alongC andC ′,
as shown in Figure 2, bottom left; due to the locally supported nature of a finite element basis,310

it is in fact sufficient to repeat only a small portion of the triangulated domain. The second ap-
proach consists in imposing periodic boundary conditions,enforcing (f ◦X)|C = (f ◦X)|C′

andνT∇(f ◦X)
∣

∣

C
= −ν ′T∇(f ◦X)

∣

∣

C′ , whereν andν ′ are the unitary outward normal vec-
tors toC andC ′, while we denote the restriction of the functionf ◦X to the generic setA ⊂ R

2

by (f ◦X)|A. The second approach leads to computational savings with respect to the first, but 315

formally demands the introduction of a new function space toproperly rewrite the estimation
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problem as well as to deal with boundary terms. In Sections 3·3 and 4, for simplicity of ex-
position, we follow the former approach, but both methods are implemented and numerically
assessed in Sections 5 and 6.

3·3. Finite element solution to the estimation problem320

We now show how to solve the estimation problem (8) using the finite element spaceH1
T
(Ω),

associated with the planar meshΩT yielded in the previous step of the procedure. By introduc-
ing a proper auxiliary functiong, as detailed in the Supplementary Material, it is possible to
obtain the following reformulation of the estimation problem (8), suited for a finite element ap-
proximation in the spaceH1

T
(Ω): find (f̂ ◦X, g ◦X) ∈ {H1

n0,K(Ω) ∩ C0(Ω̄)} ×H1(Ω) such325

that

qTn f̂n − λ

∫

Ω
∇(q ◦X)TK∇(g ◦X)dΩ = qTnz

∫

Ω
(p ◦X)(g ◦X)DdΩ +

∫

Ω
∇(p ◦X)TK∇(f̂ ◦X)dΩ = 0

(12)

for any (q ◦X, p ◦X) ∈ {H1
n0,K(Ω) ∩ C0(Ω̄)} ×H1(Ω). This formulation requires less regu-

larity on the functions involved with respect to formulation (8), defined inH2
n0,K(Ω). Neverthe-

less it can be shown that the solution̂f ◦X to (12) belongs toH2
n0,K(Ω). See, e.g., Lions &

Magenes (1973).330

The functions and integrals in (12) can be approximated using functions in the finite element
spaceH1

T
(Ω), so that problem (12) is approximated with its discrete counterpart: find(f̂ ◦X, g ◦

X) ∈ H1
T
(Ω)×H1

T
(Ω) that satisfy (12) for any(q ◦X, p ◦X) ∈ H1

T
(Ω)×H1

T
(Ω), where the

integrals are now computed over the triangulationΩT . Let ψ = (ψ1, . . . , ψN )T be the column
vector of finite element basis functions that spanH1

T
(Ω), associated with the nodesξ1, . . . , ξN335

of ΩT . Let {Ψ}i,j = ψj(ui), (i = 1, . . . , n; j = 1, . . . , N ) be then×N matrix of the evalua-
tions of theN basis functions at then data locationsu1, . . . , un, whereui = X−1(xi). For any
function h ◦X ∈ H1

T
(Ω), denotehN = {h ◦X(ξ1), . . . , h ◦X(ξN )}T , so that, in accordance

with the notation introduced in (7),hn = {h ◦X(u1), . . . , h ◦X(un)}
T = ΨhN . If the mesh

vertices coincide with the data location points, as in the case of the simulations and applications340

considered in this paper, thenhN = hn andΨ = In. Moreover, consider theN ×N matrices

R0 =

∫

ΩT

ψψT DdΩ, R1 =

∫

ΩT

∇ψTK∇ψ dΩ.

Thus, the integrals in (12) can be expressed as
∫

ΩT

∇(q ◦X)TK∇(g ◦X)dΩ = qTNR1gN ,

∫

ΩT

(p ◦X)(g ◦X)DdΩ = pTNR0gN ,

∫

ΩT

∇(p ◦X)TK∇(f̂ ◦X)dΩ = pTNR1f̂N .

Let 0N denote the column vector of lengthN of zero entries. The discrete counterpart of the
estimation problem (12) thus reduces to solving a linear system, as stated in the following propo-
sition.
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PROPOSITION2. The estimatorf̂ ◦X ∈ H1
T (Ω) that solves the discrete counterpart of the345

estimation problem (12) is given byf̂ ◦X = f̂TNψ, such that̂fN satisfies
(

−ΨTΨ λR1

λR1 λR0

)(

f̂N
gN

)

=

(

−ΨT z
0N

)

, (13)

wheregN is the vector associated with the auxiliary functiong in (12). Moreover f̂ ◦X is
uniquely determined.

Uniqueness of the solution to (13) is ensured by positive definiteness of the matricesR0 and
(

ΨTΨ+ λR1R
−1
0 R1

)

. Owing to the positive definiteness and thus invertibility ofthese matri- 350

ces, Proposition 2 implies thatf̂N =
(

ΨTΨ+ λR1R
−1
0 R1

)−1
ΨT z. The estimator is thus linear

in the observed dataz and has the typical penalized regression form, with the roughness penalty
matrixR1R

−1
0 R1 accounting for the domain deformation implied by the flattening map via the

termsD andK in the matricesR0 andR1.

4. MODEL WITH COVARIATES 355

Space-varying covariates may be included in the model by considering a generalized additive
framework, as done in Sangalli et al. (2013) for planar domains. Letwi = (wi[1], . . . , wi[d])

T be
ad-vector of covariates associated with the variable of interestzi observed at the locationxi.We
modify model (1) as

zi = wT
i β + f(xi) + ǫi (i = 1, . . . , n), (14)

whereβ ∈ R
d is the vector of regression coefficients and the remaining terms are defined as in 360

(1). This can be regarded as a partially linear model; see, e.g., Härdle et al. (2000). To estimate
β andf in (14), we minimize the following penalized sum of squared errors functional

JΓ,λ(β, f) =
n
∑

i=1

{

zi − wT
i β − f(xi)

}2
+ λ

∫

Γ
{∆Γf(x)}

2 dΓ.

Thus, using the mapX, we can consider the following equivalent estimation problem over the
planar domainΩ: find β ∈ R

d andf ◦X ∈ H2
n0,K(Ω) that minimize

JΩ,λ(β, f ◦X) =
n
∑

i=1

[

zi − wT
i β − f{X(ui)}

]2
+ λ

∫

Ω

1

D(u)

(

div
[

K(u)∇f{X(u)}
]

)2
dΩ.

(15)
Let W be then× d matrix whosei-th row is the vectorwT

i of the covariates associated365

with the i-th data location. We assumeW has full rank. DefineP =W (W TW )−1W T to be
the matrix that orthogonally projects on the subspace ofR

n spanned by the columns ofW. Let
Q = (I − P ). Then the following result holds.

PROPOSITION3. The estimatorŝβ and f̂ ◦X that minimize (15) overRd andH2
n0,K(Ω), are

given respectively bŷβ = (W TW )−1W T (z − f̂n) and f̂ satisfying 370

qTnQf̂n + λ

∫

Ω

1

D
div

{

K∇(q ◦X)
}

div
{

K∇(f̂ ◦X)
}

dΩ = qTnQz (16)

for any functionq defined onΓ such thatq ◦X ∈ H2
n0,K(Ω). Moreover, the estimatorŝβ and

f̂ ◦X exist and are unique.
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To prove this result, we first differentiate the functionalJΩ,λ(β, f ◦X) with respect toβ, ob-
taining the minimizerβ̂ = β̂(f). After pluggingβ = β̂ into (15), the proof follows the one of
Proposition 1.375

Following the same arguments invoked for the model in Section 1·2, an auxiliary functiong
is introduced to derive the weak formulation of (16), analogously to (12). Hence the estimation
problem is well suited for the discretization via a finite element space, and yields the following
result.

PROPOSITION4. The estimatorŝβ ∈ R
d and f̂ ◦X ∈ H1

T (Ω) that solve the discrete coun-380

terpart of the estimation problem with covariates areβ̂ = (W TW )−1W T (z − f̂n) and f̂ ◦X =

f̂TNψ, such that̂fN satisfies
(

−ΨTQΨ λR1

λR1 λR0

)(

f̂N
gN

)

=

(

−ΨTQz
0N

)

, (17)

wheregN is the vector associated with the auxiliary functiong. Moreover β̂ and f̂ ◦X are
uniquely determined.

From (17) we derivêfN = (ΨTQΨ+ λR1R
−1
0 R1)

−1ΨTQz, and the estimatorŝβ and f̂N are385

thus linear in the observed data valuesz. Denote bySf the n× n matrix Sf = Ψ(ΨTQΨ+

λR1R
−1
0 R1)

−1ΨTQ. Using this notation,̂fn = Sf z andβ̂ = (W TW )−1W T
(

I − Sf
)

z. Since
E(z) =Wβ + fn and var(z) = σ2 In, with some algebra we derive

E(f̂n) = Sf fn, E(β̂) = β + (W TW )−1W T
(

In − Sf
)

fn, (18)

var(f̂n) = σ2 Sf S
T
f , (19)

var(β̂) = σ2(W TW )−1 + σ2(W TW )−1W T
(

Sf S
T
f

)

W (W TW )−1. (20)

Now let S denote the smoothing matrixP +QSf and consider the vector̂z of fitted values at
then data locations,̂z =Wβ̂ + f̂n = S z. To measure the equivalent degrees of freedom for this390

linear estimator, we can use the trace of the smoothing matrix, tr(S). We can then estimateσ2 by
σ̂2 = (z − ẑ)T (z − ẑ)/{n − tr(S)}. This estimate ofσ, in combination with the expression in
(20), can be used to derive approximate confidence intervalsfor β and for the pointwise evalua-
tions off. The Supplementary Material provides a simulation study in support of the asymptotic
normality of these estimators. Moreover, the smoothing parameterλ can be selected by general-395

ized cross validation, minimizing the quantity GCV(λ) = (z − ẑ)T (z − ẑ)/[n{1 − tr(S)/n}2].
The predicted value of a new observation atxn+1 with associated covariateswn+1 is given
by ẑn+1 = wT

n+1β̂ + f̂(un+1) = wT
n+1β̂ + f̂TNψ(un+1),whereX(un+1) = xn+1. The mean and

variance ofẑn+1 can be obtained from the expression above and approximate prediction inter-
vals may be derived. Owing to the conformal mapX between theΓ andΩ, the solution to the400

estimation problem and these distributional results can beobtained on the original non-planar
domain; see Figure 1, (d) to (e).

The estimators have two sources of bias. One source is the penalty term, and this is typical
of regression models involving a roughness penalty: unlessthe true functionf is such that it
annihilates the penalty term, this term will bias the estimator. This source of bias disappears as405

n increases, in the sense of infill asymptotics, if the smoothing parameterλ decreases withn.
Letting λ decrease withn appears natural, since having more observations decreasesthe need
for regularization. A second source of bias is the discretization, and is common to any model
employing a basis expansion. This source of bias disappearsas the mesh is appropriately re-
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fined. These convergence results follow from Azzimonti et al. (2014a) and are formalized in the410

Supplementary Material. The bias always appeared negligible in our simulations.

5. SIMULATION STUDIES

In this section we illustrate the performance of the proposed technique on different non-planar
domains. We compare three methods:

A: the proposed spatial regression model over non-planar domains; 415

B: the spatial regression model over planar domains introduced in Ramsay (2002) combined
with the cylindrical flattening map;

C: the iterative heat kernel smoothing described in Chung etal. (2005).

Since iterative heat kernel smoothing is not designed for the inclusion of covariates, this simula-
tion study does not include covariates. The three methods are compared on four tubular domains:420

three test domains and a real geometry of an internal carotidartery from the AneuRisk dataset;
see Figure 4. Since the spatial regression model over planardomains is combined with the cylin-
drical flattening map, we consider an artery geometry that does not present an aneurysm; in fact
the cylindrical map is not suited to deal with large aneurisms as multiple points on the wall of
the carotid artery would be mapped to the same point in the plane. 425

To compute the cylindrical flattening map, we consider the centerline of the tubular domain,
which for simplicity is assumed known, this being the case for the AneuRisk data. Then, each
pointx = (x[1], x[2], x[3]) on the non-planar domainΓ is associated with the closest point on the
centerline. Hence, it is possible to consider the cylindrical parameterization defined by(s, r, θ),
wheres is the curvilinear abscissa computed along the centerline,r is the artery radius, i.e., the430

distance betweenx and the associated centerline point, andθ is the angle in radians identified by
x with respect to the curvilinear abscissa. The cylindrical flattening map thus changesΓ into the
rectangle(s, θR̄), whereR̄ is the average radius. Analogously to the spatial regression model
over non-planar domains, the necessary(2πR̄)-periodicity of the estimate along the coordinate
θR̄ can be guaranteed either by repeating the data values at the same abscissas but with ordinates435

(θ + 2π)R̄ and(θ − 2π)R̄, or by imposing periodic boundary conditions. Both approaches are
implemented, and the same is done for the spatial regressionover non-planar domains. Finally,
for these methods the optimal value of the smoothing parameterλ is selected at each simulation
replicate and for each domain by generalized cross validation.

Iterative heat kernel smoothing has been developed for neuroimaging applications, to deal440

with very complex domain geometries such as the cortical surface of the brain, which is usually
approximated by three-dimensional meshes with more than106 nodes. This smoothing algorithm
aims at reducing the computational burden associated with such geometries and works directly
on the mesh without any flattening. To do this, the Laplace–Beltrami eigenvalue problem is
solved directly onΓ, i.e., ordered eigenvalues0 = λ0 ≤ λ1 ≤ · · · and the corresponding eigen-445

functionsφ0, φ1, . . . are found by solving the eigenvalue problem−∆Γφj = λφj onΓ. Thus, the
heat kernel with bandwidtht is constructed from the eigenvalue-eigenfunction pairs{(λj , φj)}
asKt(p, q) =

∑

∞

j=0 e
−λjtφj(p)φj(q), wherep andq are two generic points onΓ. The heat ker-

nel smoothing ofzi is given byKt ∗ zi =
∑∞

j=0 e
−λjtβj(xi)φj(xi), whereβj(xi) = 〈zi, φj〉.

In practice, onlyk eigenvalue-eigenfunction pairs are chosen via an iterative residual fitting al- 450

gorithm. For our simulations, we made a heuristic choice by selecting the bandwidth with the
best performance after some test runs. In particular, we sett = 10−3. To determine the level of
smoothing, the optimal number of iterations is selected foreach simulation replicate and for each
domain via the F-test criterion outlined in Chung et al. (2005).
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Fig. 4. Simulation study. Top: colormap of a test function generated by (21) on four tubular domains; the fourth one is a real
geometry of an internal carotid artery from the AneuRisk dataset. Middle: data with noise. Bottom: estimates provided by the

spatial regression model over non-planar domains. The colormap range is optimized for each geometry, magenta to green
(min,max); Geometry 1: (-4.06,6.06); Geometry 2: (-0.79,2.79); Geometry 3: (-5.14,7.17); Geometry 4: (-2.09,4.10).
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Fig. 5. Box plots of the mean square errors for the three estimators over fifty simulations. A: spatial regression over non-planar
domains; B: spatial regression over planar domains, combined with cylindrical flattening; C: iterative heat kernel smoothing.
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We generate data as follows. Over each non-planar test domain, we consider fifty test func- 455

tions, having the form

f(x[1], x[2], x[3]) = a1 sin(2πx[1]) + a2 sin(2πx[2]) + a3 sin(2πx[3]) + 1, (21)

with coefficientsaj (j = 1, 2, 3) randomly generated from independent normal distributions
with mean and standard deviation equal to one. For each geometry, the data locationsxi,
(i = 1, . . . , n) coincide with the nodes of the three-dimensional mesh usedto approximate the
domain; see, e.g., Figure 2, top left, for the triangular mesh approximating Geometry 2. Noisy460

data values are obtained, in accordance with the model (1), by adding independent normally dis-
tributed errors with mean zero and a standard deviation0.5 at each of the data locations. For
each geometry, the top row of Figure 4 shows an example of a test function generated by (21),
the middle row shows the corresponding level of noise, and the bottom row shows the associated
estimate by the proposed spatial regression model. The firstevidence of the good performance465

of the proposed method is provided by a visual comparison between each test function and the
corresponding estimate. The colormaps are obtained by linear interpolation of the data atxi,
using Matlab code of Chung et al. (2005).

For each simulation replicate and test domain, we compute the mean square error of the es-
timator associated with each of the three different methods. Figure 5 shows that the spatial re-470

gression model over non-planar domains yields better estimates with a smaller variance. Pair-
wise Wilcoxon tests confirm that the mean square errors of theestimators obtained by spatial
regression model over non-planar domains are stochastically lower than those associated with
the competitor methods, with p-values of the order10−5 to 10−8 for the comparison with the
spatial regression model over planar domains and p-values of the order10−8 to 10−10 for the 475

comparison with iterative heat kernel.
The results shown for the regression model over non-planar domains correspond to the ap-

proach imposing periodic boundary conditions. No statistically significant difference is found
between these estimates and those obtained with the approach based on the repetition of the
domain and data, and likewise for the regression models overplanar domains. Nevertheless, the480

periodic boundary conditions lead to a computationally more efficient method. For instance, with
reference to Geometry 3, characterized by 1648 nodes, the spatial regression model over non-
planar domains takes a total of 12s to fit the test data in Figure 4 when using periodic boundary
conditions, 11s for flattening the mesh and less than 1s for fitting the data, and 16s with data
repetition. For the same geometry and data, spatial regression model over planar domains takes485

2s with periodic boundary conditions, 1s for flattening and less than 1s for fitting, and 16s with
data repetition. The shorter times taken by the model over planar domains do not account for the
computation of the centerline, which for simplicity is hereconsidered as already known. Finally,
iterative heat kernel smoothing takes 44s for fitting the same data. The simulations were run with
Matlab 7.12.0 on 2 GHz Intel Core i7 processor in a MacBook Prowith a 256GB Solid State 490

hard drive.
The Supplemetary Material extends this comparative study to a technique based on tensor

product of univariate smoothing splines, illustrating theadvantages of the methods considered in
this section with respect to a smoothing technique that is not constrained over the manifold. The
Supplemetary Material also offers a simulation study with covariates. 495

6. APPLICATION TO HEMODYNAMIC DATA

In this section, we apply the non-planar spatial regressionmodel to the AneuRisk
data. The AneuRisk project (https://statistics.mox.polimi.it/aneurisk/and
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http://ecm2.mathcs.emory.edu/aneuriskweb/index) gathered researchers of
scientific fields from neurosurgery and neuroradiology to statistics, numerical analysis and bio-500

engineering, with the aim of studying the pathogenesis of cerebral aneurysms. Aneurysms are
deformations of the vessel wall. The formation of an aneurysm is usually ascribed to the complex
interplay between the biomechanical properties of artery walls and the effects of hemodynamic
forces exerted on the vessel walls, such as wall shear stressand pressure. These forces in turn de-
pend on the vessel morphology itself; exploring the relationships between the vessel morphology505

and the hemodynamics was one of the main goals of the AneuRiskproject.
Here, we analyze hemodynamic data on the real internal carotid artery displayed in Fig-

ure 1(a), and we study its relationship with local vessel morphology. Iterative heat kernel smooth-
ing cannot be implemented in this study, as it cannot yet account for space-varying covariates,
while the cylindrical map for the planar spatial regressionmodel cannot be implemented due510

to the large aneurysm. The hemodynamic quantities of interest, such as wall shear stress and
pressure, are computed via computational fluid dynamics simulations over the real anatomy
(Passerini et al., 2012). The inner carotid artery geometryis obtained via the reconstruction al-
gorithm coded in the Vascular Modeling ToolKit, from three-dimensional angiographic images
belonging to the AneuRisk data warehouse (Piccinelli et al., 2009). Figure 1(a) shows the mod-515

ulus of the simulated wall shear stress (dyn/cm2) at the systolic peak on the three-dimensional
geometry. Figure 1(b) shows the three-dimensional triangular mesh approximating the artery.
Each triangle vertex in this mesh coincides with a data location xi, at which the wall shear stress
and covariates describing the local morphology are measured. According to the approach pro-
posed in this paper, the three-dimensional triangular meshis flattened via the conformal map520

described in Section 3·2 to create the planar triangulation in Figure 1(c). The sides of the planar
triangulation labeled inflow and outflow correspond to the open ends of the carotid artery. The
sides indicated by dashed lines correspond to the longitudinal cut along the artery wall, con-
necting the open boundaries of the artery. To maintain the periodicity of the solution we impose
periodic boundary conditions on these sides. The aneurysm and major curves of the artery are525

recognizable also in the flattened domain. In particular, the area of the mesh which is very fine
and close to the outflow side corresponds to the aneurysmal sac.

To explore the relationship between the wall shear stress and the local morphology of the
artery, we consider the following space-varying covariates: the local curvature of the vessel wall,
the curvature of the artery centerline and the local radius of the vessel. The wall shear stress530

obtained via the numerical simulations depends on the complex three-dimensional geometry
of the carotid, and thus also implicitly on the simple geometric features that we consider as
covariates, although the form of such relationship is a priori unclear. Hence, we aim to explore
the form of this relationship and to understand to what extent these geometric features can be
considered a good summary of the three-dimensional artery morphology. The local curvature of535

the vessel wall is calculated from the three-dimensional mesh and varies between−20.63 cm−1

and 36.46 cm−1. The curvature of the vessel centerline identifies the curvature of the whole
vascular geometry. The artery centerline and its curvatureare computed as described in Sangalli
et al. (2009b). In particular, to measure the centerline curvature at each point on the vessel wall
we refer to the curvature at the associated centerline point. The centerline curvature varies from540

0.05 cm−1 to 4.64 cm−1. Finally, the local radius of the vessel is measured as the distance from
the artery wall to the associated centerline point, and ranges from0.14 cm to0.43 cm.

Figure 1(d) and (e) display the wall shear stress estimated via the non-planar spatial regression
model including the covariates, forλ = 100.5. The planar view in Figure 1(d) allows us to see the
entire geometry without rotating the figure, thus making areas of interest easier to highlight. We545

recognize large areas of high wall shear stress, in correspondence with the neck of the aneurysm
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and along the first major bend of the carotid syphon, thus highlighting the sensitivity of the wall
shear stress with respect to the complex geometry of the artery. Notice in particular the sharp
spatial change in the wall shear stress values, from the veryhigh values at the aneurysmal neck
to the very low values in correspondence with the aneurysmalsack. These sharp changes in wall550

shear stress are conjectured to be very dangerous for the aneurysmal pathology and its evolution.
The estimated covariates effects areβ̂1 = −0.99 dyn cm with a standard error of0.03 dyn cm
for the local curvature of the vessel wall,β̂2 = 0.35 dyn cm with a standard error of0.11 dyn cm
for the curvature of the artery centerline, andβ̂3 = −7.834 dyn/cm with a standard error of0.13
dyn/cm for the local radius. Hence, the local curvature of the vessel wall and the local radius555

are negatively associated with the wall shear stress, whilethe artery centerline curvature is posi-
tively associated. This supports clinical intuition aboutthe effect of the local vessel morphology,
and is consistent with hemodynamical studies in simplified geometries. As expected, the most
influential factor for the wall shear stress is the local radius. These preliminary findings will be
further investigated in future work, with statistical analysis across patients. An important advan-560

tage of the non-planar spatial regression model approach isthat patient-specific estimates can
all be mapped into a common planar domain where, after suitable registration among patients,
comparisons across patients are possible.

On the computational side, there is also a possibility to solve the estimation problem in (2)
directly on the non-planar domain, without resorting to a flattening map. This would probably 565

lead to computational savings, although mapping the estimates to a reference domain is still of
interest, allowing for more direct comparisons across different geometries.
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