In this work we approximate the solution of a quasilinear elliptic problem of monotone type by using the Mimetic Finite Difference (MFD) method. Under a suitable approximation assumption, we prove that the MFD approximate solution converges, with optimal rate, to the exact solution in a mesh-dependent energy norm. The resulting nonlinear discrete problem is then solved iteratively via linearization by applying the Kačanov method. The convergence of the Kačanov algorithm in the discrete mimetic framework is also proved. Several numerical experiments confirm the theoretical analysis.

Mimetic finite difference approximation of quasilinear elliptic problems

ANTONIETTI, PAOLA FRANCESCA;BIGONI, NADIA;VERANI, MARCO
2015-01-01

Abstract

In this work we approximate the solution of a quasilinear elliptic problem of monotone type by using the Mimetic Finite Difference (MFD) method. Under a suitable approximation assumption, we prove that the MFD approximate solution converges, with optimal rate, to the exact solution in a mesh-dependent energy norm. The resulting nonlinear discrete problem is then solved iteratively via linearization by applying the Kačanov method. The convergence of the Kačanov algorithm in the discrete mimetic framework is also proved. Several numerical experiments confirm the theoretical analysis.
File in questo prodotto:
File Dimensione Formato  
Antonietti_Bigoni_Verani_CALCOLO_2015.pdf

Accesso riservato

Descrizione: articolo principale
: Publisher’s version
Dimensione 447.75 kB
Formato Adobe PDF
447.75 kB Adobe PDF   Visualizza/Apri
Mimetic finite difference approximation of quasilinear elliptic problems_11311-972328_Antonietti.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 703.89 kB
Formato Adobe PDF
703.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/972328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact