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1 Introduction

In this paper we address the discretization of the following quasilinear elliptic problem:

−div(κ(|∇u|2)∇u) = f in �, u = 0 on ∂�, (1)
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where f is a given function, and Ω is an open, bounded set of R2. The approximation of 
problem (1) is a challenging standalone problem, see, e.g., [27,30,32,45] and [36,37] 
in the context of conforming and discontinuous finite element methods, respectively. 
For the finite volume approximation of nonlinear elliptic problems we refer for example 
to [1,19].

At the the same time, efficient discretizations of problem (1) represent a necessary 
intermediate step towards the solution of non-newtonian flow problems, see, e.g.,
[6–10,18,39,44] and [28] again in the conforming and discontinuous finite element 
context, respectively. It is important to remark that non-newtonian fluids are ubiquitous 
in industrial applications. For example, for polymeric extrusion, robust and reliable 
numerical algorithms are mandatory in order to predict and, possibly, to optimize the 
production process, c.f. [5,43], for example.

The aim of this paper is to show that the flexibility of the Mimetic Finite Difference 
(MFD) method (see, e.g., [21–24] for a detailed introduction) can be successfully 
exploited to discretize quasilinear elliptic problems, and that the Kačanov algorithm 
can be successfully employed to solve the discrete nonlinear system resulting from 
MFD discretizations; we refer to [47] for more details on the Kačanov method and to 
[34] for an application in the context of adaptive finite element methods. The MFD 
method can be naturally employed on very general decompositions made of (possibly 
non convex) polyhedrals which do not have to fulfill matching conditions. Thanks to 
such a flexibility, the MFD method has been rapidly applied to a wide range of problems 
[2,11,15–17,21,41,42], and to Maxwell’s equations and magnetostatic fields problems 
[38,40], Stokes equations [13,14], eigenvalue problems [26], problems governed by 
variational inequalities [3] and optimal control problems [4]. Very recently, a very 
promising evolution of the MFD scheme, namely the Virtual Element Method, has been 
introduced in [12,25,29]. However, the application to nonlinear elliptic problems has 
not been taken into account yet. The aim of this work is to approximate the solution of a 
quasilinear elliptic problem of monotone type by using the MFD method. We show that 
the MFD solution converges to the exact analytical solution in a suitable discrete energy 
norm. The convergence holds under a suitable approximation assumption which is 
verified through numerical experiments. The resulting nonlinear problem is then solved 
iteratively via linearization by applying the Kačanov method, and the convergence of 
the Kačanov algorithm is proved in the discrete mimetic framework.

The rest of the paper is organized as follows. In Sect. 2 we introduce the weak 
form of (1) and state its well–posedness. The MFD discrete formulation and its well-
posedness is discussed in Sect. 3, and the a priori error estimates are derived in Sect. 4. 
In Sect. 5, we introduce the Kačanov method in the mimetic context, and prove that 
the algorithm converges to the mimetic discrete solution. Finally, in Sect. 6 we present 
some numerical results to confirm our theoretical analysis.

2 A quasilinear elliptic problem

Throughout the paper we will use standard notation for Sobolev spaces, norms and
seminorms (see, e.g., [33]). Moreover, the symbol � denotes an upper bound that 
holds up to a positive constant independent of the discretization parameters.



We first introduce the following semilinear form

b(u; v,w) :=
∫

Ω

κ(|∇u|2)∇v · ∇w dx ∀u, v, w ∈ H1
0 (Ω), (2)

where κ : R
+ −→ R

+ is a nonlinear function whose properties will be stated below
(cf. Assumption 21), andΩ is a sufficiently smooth two-dimensional domain. We are
interested in solving the following quasilinear elliptic problem: find u ∈ H1

0 (Ω) such
that

b(u; u, v) = F(v) ∀ v ∈ H1
0 (Ω), (3)

where

F(v) :=
∫

�

f v dx,

for a given f ∈ L2(�). We remark that relevant physical applications, as the modeling
of non-Newtonian fluids governed by the Carreau law:

κ(t) := η∞ + (η0 − η∞)(1 + λt)
p−2

2 , t ≥ 0, (4)

with η0 ≥ η∞ ≥ 0, λ > 0 and p ∈ (1,∞), fit in this framework.
Throughout the paper, the nonlinear function κ : R

+ −→ R
+ is assumed to satisfy

the following.

Assumption 21 (Assumptions on the nonlinearity) The nonlinear function κ :
R

+ −→ R
+ satisfies the following

i) κ(·) is continuous over [0,+∞);
ii) there exist two positive constants k∗, k∗ such that:

k∗(t − s) ≤ κ(t2)t − κ(s2)s ≤ k∗(t − s) ∀ t > s ≥ 0. (5)

We observe that, by choosing s = 0 into (5) we get

k∗ ≤ κ(t2) ≤ k∗ ∀ t > 0. (6)

Remark 1 The Carreau law (4) satisfies Assumption (21) provided that p ∈ (1, 2) and
η∞ > 0. To prove the upper bound in (5), it is sufficient to observe that the function

ϕ(t) := t

(1 + λt2)ν
ν ∈

(
0,

1

2

)

is Lipschitz continuous with constant equal to one. Indeed,

ϕ′(t) = 1

(1 + λt2)ν

[
1 − 2νλt2

1 + λt2

]



is positive and bounded from above (the maximum is equal to one) and it tends to zero
as t goes to infinity. Therefore, setting ν := 2−p

2 , we have

η(t2)t − η(s2)s = η∞(t − s)+ (η0 − η∞)
[

t

(1 + λt2)ν
− s

(1 + λs2)ν

]
≤ η0(t−s).

The lower bound in (5) follows straightforwardly

η(t2)t − η(s2)s = η∞(t − s)+ (η0 − η∞)
[

t

(1 + λt2)ν
− s

(1 + λs2)ν

]
≥η∞(t−s),

since the term in the square brackets is positive.

Remark 2 The nonlinear function κ(·) could also be a function of the space position,
i.e., κ : Ω×R

+ −→ R
+. In such cases, Assumption 21 has to be modified as follows:

i) κ(·, ·) is continuous over Ω × [0,+∞);
ii) there exist two positive constants k∗, k∗ such that:

k∗(t − s) ≤ κ(x, t2)t − κ(x, s2)s ≤ k∗(t − s) ∀ t > s ≥ 0 ∀ x ∈ Ω.

Since we are interested in non-Newtonian fluids governed by the Carreau law (4)
we will not address in this paper this case specifically.

Before going after let us recall here some useful results. Let us introduce the function
β : R

+ −→ R
+ given by

β(s) := 1

2

s2∫

0

κ(t)dt.

By observing that β ′(s) = κ(s2)s, for all s ∈ R
+, and using Assumption 21, we

get

k∗(t − s) ≤ β ′(t)− β ′(s) ≤ k∗(t − s) ∀ t > s ≥ 0.

Next, let us state the following Lemma (we refer to [47, Lemma 25.26] for the
proof).

Lemma 1 Let γ (x) := β(|x |) for x ∈ R
d . Under Assumption 21, for all x, y ∈ R

d

it holds

|γ ′(x)− γ ′(y)| ≤ 3k∗|x − y| (7)

〈γ ′(x)− γ ′(y), x − y〉Rd ≥ k∗|x − y|2, (8)

where 〈·, ·〉Rd denotes the Euclidean scalar product of R
d .



Next, we address the well-posedness of problem (3). To this aim, we introduce the
nonlinear operator

B : H1
0 (�) −→ H−1(�) 〈Bu, v〉 := b(u; u, v) ∀ v ∈ H1

0 (�). (9)

The existence and uniqueness of such an operator follows from the Riesz’s Theorem.
Hence, problem (3) can be equivalently stated as follows: find u ∈ H1

0 (�) such that

Bu = F, (10)

where F ∈ H−1(Ω) is given. The next result is a key point towards the proof of the
well-posedness of problem (10).

Lemma 2 The operator B defined as in (9) is Lipschitz continuous and strongly
monotone with respect to the H1(�)-norm, i.e.,

‖Bu − Bv‖H−1(�) ≤ 3k∗‖u − v‖H1(�) ∀u, v ∈ H1
0 (�), (11)

〈Bu − Bv, u − v〉 ≥ k∗‖u − v‖2
H1(�)

∀u, v ∈ H1
0 (�).

Proof From (7), we obtain that, for all u, v, z ∈ H1
0 (�), it holds

|〈Bu − Bv, z〉| ≤
∫

�

∣∣∣κ(|∇u|2)∇u − κ(|∇v|2)∇v
∣∣∣ |∇z|dx

≤ 3k∗
∫

�

|∇u − ∇v||∇z|dx ≤ 3k∗‖u − v‖H1(�)‖z‖H1(�),

and

〈Bu − Bv, u − v〉 =
∫

�

(
κ(|∇u|2)∇u − κ(|∇v|2)∇v

)
∇(u − v)dx

≥ k∗
∫

�

|∇u − ∇v|2 dx = k∗‖u − v‖2
H1(�)

.

This easily implies that

‖Bu − Bv‖H−1(�) ≤ 3k∗‖u − v‖H1(�) ∀u, v ∈ H1
0 (�),

〈Bu − Bv, u − v〉 ≥ k∗‖u − v‖2
H1(�)

∀u, v ∈ H1
0 (�).

Finally, we can state the well-posedness of problem (10).

Proposition 1 Let B be the operator defined as in (9) and let F ∈ H−1(Ω) be given.
Under Assumption 21, Eq. (10) admits a unique solution u ∈ H1

0 (�).



Proof By using the Zarantonello’s Theorem (see, e.g., [47, Theorem 25.B]) and
Lemma 2 we can conclude that Eq. (10) admits a unique solution u ∈ H1

0 (�).

3 The MFD discretization

In this section we derive a mimetic discretization of problem (3) by introducing suitable
mesh assumptions and the discrete space endowed with a proper scalar product. We
refer [3,21,24] for more details on the MFD method for elliptic problems.

3.1 Mesh assumptions, discrete space and norms

Let Ωh be a non-overlapping partition of Ω into, possibly non-convex polygonal
elements E with granularity h := supE∈Ωh

hE , being hE the diameter of E ∈ �h . We
denote by N ◦

h and N ∂
h the sets of interior and boundary mesh vertexes, respectively,

and set Nh = N ◦
h ∪ N ∂

h . Proceeding as in [24] we also assume the following.

Assumption 31 (Mesh regularity assumptions) There exist an integer number N ,
independent of h, and a compatible sub-decomposition Th of every �h into shape-
regular triangles in such a way that every element E can be decomposed in at most
N triangles.

We point out that Assumption 31 only requires the existence of a compatible sub-
mesh that does not have to be constructed in practice. Moreover, Assumption 31
guarantees that the following mesh regularity properties are satisfied (cf. [21]).

i) There exists Ne > 0 such that every element E has at most Ne edges;
ii) There exists γ > 0 which only depends on Ne such that, for every element E and

for every edge e of E , it holds

|e| ≥ γ hE |E | ≥ γ h2
E ,

where |e| is the length of e and |E | denotes the area of the element E ;
iii) For every E ∈ Ωh and for every edge e of E , the following trace inequality holds

‖ψ‖2
L2(e) � h−1

E ‖ψ‖2
L2(E) + hE |ψ |2H1(E) ∀ψ ∈ H1(E). (12)

Next, we introduce the discrete space by choosing as degrees-of-freedom the nodal
values in each vertex v ∈ Nh . More precisely, every discrete function vh is a vector
of real components vh := {vv}v∈Nh , one per mesh vertex. The space of unknowns Vh

is then defined taking into account the homogeneous Dirichlet boundary conditions,
i.e.,

Vh :=
{
vh := {vv}v∈Nh : vv

h = 0 ∀ v ∈ N ∂
h

}
.

Clearly, the number of unknowns is equal to the number of interior mesh vertexes.
The space Vh is endowed with the following discrete norm that mimics the usual
H1

0 (�)-norm:



‖vh‖2
1,h :=

∑
E∈Ωh

‖vh‖2
1,h,E =

∑
E∈Ωh

|E |
∑
e∈Eh
e⊂∂E

[
1

|e| (v
v2 − vv1)

]2

, (13)

where v1 and v2 are the two vertexes of e ∈ Eh , and |E | is the area of the element
E ∈ �h .

Finally, we introduce the standard nodal interpolation operator satisfying classical
approximation estimates [20]. For every function v ∈ C0(Ω) ∩ H1

0 (Ω), the interpo-
lation vI ∈ Vh is given by

vv
I := v(v) ∀ v ∈ Nh . (14)

A local interpolation operator from C0(E)∩ H1(E) into V E
h can be defined analo-

gously, where we denote by V E
h the restriction of Vh to the E ∈ �h , i.e., V E

h = Vh |E .

3.2 The discrete formulation of the problem

The mimetic approximation of problem (3) is essentially based on the following obser-
vation. Let us consider the local semilinear form given by the restriction of the form
(2) on each element E of the partition, i.e.,

bE (u; v,w) :=
∫

E

κ(|∇u|2)∇v · ∇w dx ∀u, v, w ∈ H1(E). (15)

Next, denoting by P
1(E) the space of linear polynomials on E ∈ Ωh , we can

observe that it holds

bE (ϕ; v,w) = κ(|∇ϕ|2)
∫

E

∇v · ∇w dx ∀ϕ ∈ P
1(E) ∀ v,w ∈ H1(E).

In view of the above relation, the idea is to construct a suitable discrete approxi-
mation of the nonlinear term κ(|∇ϕ|2) and of the integral one.

To this aim, we introduce a symmetric bilinear form aE
h (·, ·) : V E

h × V E
h −→ R

that locally mimics

aE
h (vh, wh) ∼

∫

E

∇ṽh · ∇w̃h dx . (16)

In this context, ṽh, w̃h can be interpreted as regular functions living on E which
“extend the data”vh, wh inside the element and the symbol∼ stands for approximation.
As shown in [21], the local forms aE

h (·, ·) can be constructed in such a way that the
following properties are satisfied.



Proposition 2 For every E ∈ �h, it holds

‖vh‖2
1,h,E � aE

h (vh, vh), aE
h (uh, vh) � ‖uh‖1,h,E‖vh‖1,h,E ∀ uh, vh ∈ V E

h .

Moreover, for every E ∈ �h and every linear function ϕ ∈ P
1(E)

aE
h (vh, ϕI ) =

∑
e∈Eh
e⊂∂E

(∇ϕ · ne
E )

|e|
2

(
v

v1
h + v

v2
h

) ∀ vh ∈ V E
h , (17)

where v1 and v2 are the two vertexes of e ∈ Eh, and ne
E is the unit normal vector

to e ∈ Eh that points outside E.

Identity (17) is usually refereed to as local consistency property and is related to
the following observation. Let E any element in Ωh . For all v ∈ H1(E) and for all
linear functions ϕ on E , using an integration by parts formula, we obtain

∫

E

∇v · ∇ϕ dx = −
∫

E


ϕ v dx +
∑

e∈E E
h

∫

e

(∇ϕ · ne
E ) v ds

=
∑

e∈E E
h

∇ϕ · ne
E

∫

e

v ds . (18)

If we substitute the integral in the last term of (18) with a trapezium integration
rule, we get condition (17) which means that that the discrete bilinear form aE

h (·, ·)
respects integration by parts formula whenever tested with linear functions. As pointed
out in [3], the local form aE

h (·, ·) can be written in an algebraic manner by introducing
a suitable symmetric and positive definite local matrix A

E
h ∈ R

kE ×kE such that

aE
h (uh, vh) = uT

h A
E
h vh ∀uh, vh ∈ V E

h ,

where kE denotes the number of vertexes of E ∈ �h .
Next, we discuss the mimetic discretization of the nonlinear term within each ele-

ment. To this aim, for every E ∈ �h , we introduce the operator

GE
h : V E

h −→ R
+ GE

h (uh) := aE
h (uh, uh)

|E | = uT
h A

E
h uh

|E | . (19)

Bearing in mind (16), the above operator turns out to be a good candidate to approx-
imate |∇uh |2 within each element, as the following heuristics shows:

∫
E |∇u|2
|E | ∼ GE

h (uI)∀ u ∈ C0(E) ∩ H1(E),

where uI ∈ Vh
E is defined according to (14). 



In view of the above discussion, we define the mimetic discretization of the local
semi-linear form (15) as follows:

bE
h (uh; vh, wh) := κ(GE

h (uh)) aE
h (vh, wh) ∀uh, vh, wh ∈ V E

h ,

and set

bh(uh; vh, wh) :=
∑

E∈Ωh

bE
h (uh; vh, wh) ∀uh, vh, wh ∈ Vh . (20)

Then, the mimetic discretization of problem (3) reads: find uh ∈ Vh , such that

bh(uh; uh, vh) = Fh(vh) ∀ vh ∈ Vh . (21)

The right-hand-side of problem (21) is defined as

Fh(vh) :=
∑

E∈Ωh

f E

kE∑
i=1

vviωi
E ,

where v1, . . . , vkE are the vertexes of E , ω1
E , . . . , ω

kE
E are positive weights such that∑kE

i=1 ω
i
E = |E |, and

f E := 1

|E |
∫

E

f dx .

3.2.1 Well-posedness of the discrete problem

This section is devoted to prove the well-posedness of the discrete problem (21).
The following straightforward generalization of Lemma 1 will be useful in the

forthcoming analysis.

Corollary 1 Let M ∈ R
d×d be a symmetric and positive definite matrix, and let 〈·, ·〉M

and ‖ · ‖M the induced scalar product and norm, respectively, i.e.,

〈x, y〉M := xT
My, ‖x‖2

M
:= xT

Mx ∀ x, y ∈ R
d .

Under Assumption 21, the function γM(x) := β(‖x‖M) satisfies

|〈γ ′
M
(x)− γ ′

M
(y), x − y〉M| ≤ 3k∗‖x − y‖2

M

〈γ ′
M
(x)− γ ′

M
(y), x − y〉M ≥ k∗‖x − y‖2

M
,

for all x, y ∈ R
d .



Proceeding as before, we introduce the discrete operator

Bh : Vh −→ R, 〈Bhuh, vh〉 := bh(uh; uh, vh)∀vh ∈ Vh, (22)

and rewrite problem (21) as: find uh ∈ Vh such that

Bhuh = Fh, (23)

where Fh is given.

Lemma 3 The operator Bh defined as in (22) is Lipschitz continuous and strongly
monotone with respect to the discrete norm (13), i.e.,

|〈Bhuh − Bhvh, uh − vh〉| � ‖uh − vh‖2
1,h ∀ uh, vh ∈ Vh (24)

〈Bhuh − Bhvh, uh − vh〉 � ‖uh − vh‖2
1,h ∀ uh, vh ∈ Vh . (25)

Proof The proof follows by applying Corollary 1 to the following function

γ̃ (uh) := |E |β
(‖uh‖

A
E
h

|E |1/2
)

= |E |β
(√

GE
h uh

)
,

after having observed that it holds

〈γ̃ ′(uh), vh〉 = κ(GE
h uh)a

E
h (uh, vh) = bE

h (uh; uh, vh) ∀uh, vh ∈ Vh .

Finally, the following well-posedness result holds.

Proposition 3 Let Bh be the operator defined as in (22). Under Assumption 21, Eq.
(23) admits a unique solution uh ∈ Vh.

Proof The thesis follows by the Zarantonello’s Theorem and the Lipschitz continuity
and strongly monotonicity of the operator Bh proved in Lemma 3. ��

4 Error analysis

In this section we derive the a-priori error estimates in the mesh-dependent norm (13)
to prove the convergence of the MFD approximate solution to the exact solution of
problem (3).

Let us preliminary prove the following result that will be useful in the subsequent
analysis.

Lemma 4 For every uh ∈ Vh it holds

|bh(uh; vh, wh)| � ‖vh‖1,h‖wh‖1,h ∀wh, vh ∈ Vh . (26)



and

bh(uh;wh − vh, wh − vh) � ‖wh − vh‖2
1,h ∀wh, vh ∈ Vh . (27)

Proof We first show (26). By observing that bh(·; ·, ·) is symmetric and linear in its
second and third arguments and by using (6) and Proposition 2, we get

|bh(uh; vh, wh)| ≤
∑

E∈�h

|κ(GE
h (uh))a

E
h (vh, wh)|

�
∑

E∈�h

‖vh‖1,h,E‖wh‖1,h,E � ‖vh‖1,h‖wh‖1,h .

Similarly, we have

bh(uh;wh − vh, wh − vh) �
∑

E∈�h

‖wh − vh‖2
1,h,E = ‖wh − vh‖2

1,h,

which is (27), and the proof is complete.

Next, we introduce the following lifting operator.

Lemma 5 For every E ∈ �h, there exists a local lifting operator

RE
h : V E

h −→ H1(E) ∩ C0(E),

that satisfies the following properties:

(L1) it vanishes on the boundary of Ωh;
(L2) RE

h vh |e is a linear function ∀e ∈ Eh, e ⊆ ∂E and ∀ vh ∈ V E
h ;

(L3) |RE
h vh |2

H1(E)
� ‖vh‖2

1,h,E ∀ vh ∈ V E
h ;

(L4) ‖RE
h vh − vv

h‖L2(E) � hE‖vh‖1,h,E ∀ vh ∈ V E
h .

We observe that it is not necessary to build explicitly the lifting operator, but it is
sufficient to show that it exists. A detailed way to construct it and more details about
its properties con be found in [24]. We can then extend this definition, by introducing
the global lifting operator given by

Rh : Vh −→ H1(Ωh) ∩ C0(Ωh),

Rh(vh)|E := RE
h (vh |E ) ∀ vh ∈ Vh, E ∈ Ωh .

Finally, the following result states the convergence of the MFD approximation
towards the exact solution of problem (3).

Theorem 1 Let u ∈ H2(�) ∩ H1
0 (�) be the solution of the continuous problem

(3) and let uh be the solution of the discrete problem (21). Moreover, let uI be the



interpolation of the exact solution u defined according to (14). Finally, assume that
there exists α > 0 so that

‖κ(|∇v|2)− κ(GE
h (vI))‖L∞(Ω) � hα ∀v ∈ C0(Ω) ∩ H1

0 (Ω). (28)

Then, it holds

‖uI − uh‖1,h � hmin(1,α). (29)

.

Proof Throughout the proof we set eh := uh − uI. For every E ∈ Ωh , let u1
E be the

L2(E)-projection of u onto the space of linear polynomials on E . We then define the
piecewise discontinuous linear function u1 as u1|E := u1

E for all E ∈ �h . With a little
abuse of notation, in the following we indicate with (u1)I a collection of nodal values
such that for all elements E the restriction of (u1)I to E ∈ �h is given by the local
interpolation (u1

E )I. Note that both the || · ||1,h norm and the bilinear form ah(·, ·) can
be immediately extended to (u1)I, since both operators are a sum of local terms. By
using (25) and the discrete problem (21) we get

‖eh‖2
1,h � bh(uh; uh, eh)− bh(uI; uI, eh) = Fh(eh)− bh(uI; uI, eh)

= Fh(eh)− bh(uI; uI − (u1)I, eh)− bh(uI; (u1)I, eh)

= Fh(eh)− bh(uI; uI − (u1)I, eh)+
∑

E∈�h

δE , (30)

where δE := −κ(GE
h (uI)) aE

h ((u
1)I, eh). We next estimate the local term δE . We

first observe that, thanks to (L2)

|e|
2

(
ev1

h + ev2
h

) =
∫

e

RE
h eh dx ∀E ∈ �h,e ∈ E E

h .

Then, by integrating twice by parts and using the fact that Rheh vanishes on the
boundary of �h , it follows

δE = −κ(GE
h (uI))

∑
e∈Eh
e⊆∂E

∂u1

∂ne
E

∫

e

RE
h eh dx

= −κ(GE
h (uI))

∫

E

∇RE
h eh · ∇u1 dx

= κ(GE
h (uI))

∫

E

∇RE
h eh · ∇(u − u1)dx − κ(GE

h (uI))
∫

E

∇RE
h eh · ∇u dx

= κ(GE
h (uI))

∫

E

∇RE
h eh · ∇(u − u1)dx



+
∫

E

{
κ(|∇u|2)− κ(GE

h (uI))
}

∇RE
h eh · ∇u dx

+
∫

E

div
(
κ(|∇u|2)∇u

)
RE

h eh dx . (31)

Finally, by using problem (3) and employing (31) into (30) together with Proposi-
tion 2 we have

‖eh‖2
1,h �

∣∣Fh(eh)− ( f,Rheh)
∣∣+ ‖uI − (u1)I‖1,h‖eh‖1,h

+
∣∣∣∣∣∣
∑

E∈�h

κ(GE
h (uI))

∫

E

∇RE
h eh · ∇(u − u1)dx

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑

E∈�h

∫

E

{
κ(|∇u|2)− κ(GE

h (uI))
}

∇RE
h eh · ∇u dx

∣∣∣∣∣∣
:= I+ II+ III+ IV.

Let us estimate separately the terms I–IV. Proceeding as in the estimate of the
First Piece in [21], there holds

I = ∣∣Fh(eh)− ( f,Rheh)
∣∣ � h‖ f ‖L2(�)‖eh‖1,h � h‖eh‖1,h .

Applying the trace inequality (12) and employing a standard interpolation error
estimate yield to

II �

⎛
⎝ ∑

E∈�h

‖∇(u − u1)‖2
L2(E) + h2

E |u|2H2(E)

⎞
⎠

1/2

‖eh‖1,h � h |u|H2(�) ‖eh‖1,h .

Term III can be estimated using the Cauchy–Schwarz inequality, assumption (L3)
and again standard interpolation error estimates

III � ‖∇RE
h eh‖L2(Ωh)

‖∇(u − u1)‖L2(Ωh)
� h‖eh‖1,h |u|H2(Ω) � h‖eh‖1,h .

Finally, by using Assumption (28) and (L3), we get

IV ≤
∑

E∈Ωh

‖κ(|∇u|2)− κ(GE
h (uI))‖L∞(Ω)

∫

E

∣∣∣∇RE
h eh · ∇u

∣∣∣ dx

� hα‖∇RE
h eh‖L2(Ωh)

‖∇u‖L2(Ωh)
� hα‖eh‖1,h |u|H1(Ω) .

Combining the estimates of I–IV with (4) yields the result.



Remark 3 (On Assumption (28)) Theorem 1 relies on assumption (28), whose the-
oretical justification is still object of an on-going research. However, the numerical
investigation performed in Sect. 6 suggests the validity of (28) with α = 1, so that the
error estimate (29) reduces to ‖uI − uh‖1,h � h.

5 The Kačanov method

In this section we present the Kačanov method (see, e.g., [47]) to solve the nonlinear
problem (21). For k ≥ 0, the idealized algorithm without any stopping criterion (that
will discussed later) reads as follows: given u(k)h ∈ Vh , find u(k+1)

h ∈ Vh such that

bh(u
(k)
h ; u(k+1)

h , vh) = Fh(vh) ∀ vh ∈ Vh . (32)

The convergence of the sequence {u(k)h }k≥0 to the “exact” discrete solution uh

of problem (21) is stated in Theorem 2, below. The proof takes the steps from the
general ideas of [47, Theorem 25.B] and requires some preliminary results that will
be collected in the following.

We introduce the functional Eh : Vh −→ R defined as

Eh(vh) := 1

2

∑
E∈Ωh

|E |β
(√

GE
h (vh)

)
(33)

that represents the energy associated to system (21). It is easy to see that

〈E ′
h(uh), vh〉 = bh(uh; uh, vh) ∀uh, vh ∈ Vh . (34)

Finally, we state two auxiliary lemmas that will be crucial to prove the convergence
of the Kačanov algorithm.

Lemma 6 Let Eh(·) be defined according to (33) and let assume that κ(·) is monotone
decreasing, i.e., κ(t1) ≥ κ(t2) for all 0 ≤ t1 ≤ t2. Then,

Eh(uh)− Eh(vh) ≤ 1

2
[bh(vh; uh, uh)− bh(vh; vh, vh)] , (35)

〈E ′(uh)− E ′(vh), uh − vh〉 � ‖uh − vh‖2
1,h (36)

for all uh, vh ∈ Vh .

Proof Inequality (35) can be proved by using that k(·) is monotone decreasing and 
(19), (20) and (33)



Eh(uh)− Eh(vh) = 1

2

∑
E∈Ωh

|E |
⎡
⎢⎣

GE
h (uh)∫

0

κ(s) ds −
GE

h (vh)∫

0

κ(s) ds

⎤
⎥⎦

≤ 1

2

∑
E∈Ωh

|E |κ
(
GE

h (vh)
)[aE

h (uh, uh)

|E | − aE
h (vh, vh)

|E |

]

≤ 1

2
[bh(vh; uh, uh)− bh(vh; vh, vh)] .

Inequality (36) easily follows from (34) and the strongly monotonicity of the operator
Bh shown in Lemma 3. ��

We also have the following result that is a consequence of Lemma 4.

Lemma 7 For every k ≥ 0, given u(k)h ∈ Vh, the variational problem (32) admits a

unique solution u(k+1)
h ∈ Vh that is also the minimum of the quadratic variational

problem

min
vh∈Vh

H(vh) = min
vh∈Vh

1

2
bh

(
u(k)h ; vh, vh

)
− Fh(vh),

where H : Vh −→ R. On the other hand, the functional H(·) admits a unique
minimum that is also solution to (32).

Proof The first part of the proof follows immediately from Lemma 4. On the other
hand, for u(k)h ∈ Vh fixed, we observe that

〈H′(vh), wh〉 = bh(u
(k)
h ; vh, wh)− Fh(wh) ∀vh, wh ∈ Vh ,

and from Lemma 4 we deduce

〈H′(vh)− H′(wh), vh − wh〉 � ‖vh − wh‖2
1,h ∀vh, wh ∈ Vh .

By following [47, Problem 25.3] we get that the functional H is weakly coercive,
strictly convex and continuous and therefore it admits a unique minimum u∗

h . Moreover

〈H′(u∗
h), wh − u∗

h〉 ≥ 0, for all wh ∈ Vh and this implies that u∗
h = u(k+1)

h is the
unique solution to (32).

We are now ready to prove the convergence of the Kačanov method (32).

Theorem 2 Let {u(k)h }k≥0 be the sequence built by the Kačanov method, then u(k)h −→
uh in Vh, as k → +∞.

Proof We preliminary observe that, by defining Lh(uh) := Eh(uh) − Fh(uh), the
following minimization problem

min
vh∈Vh

L(vh)



admits a unique solution thanks to the well-posedness of problem (21) together with
(34). Next, let us define

g(uh) := 1

2

(
bh(u

(k)
h ; uh, uh)− bh(u

(k)
h ; u(k)h , u(k)h )

)
+ Eh(u

(k)
h )− Fh(uh).

Thanks to (35), we get

Eh(u
(k+1)
h )− Fh(u

(k+1)
h ) ≤ 1

2

(
bh(u

(k)
h ; u(k+1)

h , u(k+1)
h )− bh(u

(k)
h ; u(k)h , u(k)h )

)

+Eh(u
(k)
h )− Fh(u

(k+1)
h ),

that is

Lh(u
(k+1)
h ) ≤ g(u(k+1)

h ).

From Lemma 7 we deduce that u(k+1)
h ∈ Vh is the minimum of the functional g(·).

Then, we get

Lh(u
(k+1)
h ) ≤ g(u(k+1)

h ) ≤ g(u(k)h ) = Lh(u
(k)
h ). (37)

So, we can conclude that the sequence {Lh(u
(k)
h )}k≥0 is monotone decreasing and

is limited from below, since the operator Lh(·) admits a minimum. Consequently,

lim
k→∞

{
Lh(u

(k+1)
h )− Lh(u

(k)
h )

}
= 0.

Finally, by using (37), the linearity of the form bh(·; ·, ·) in its second and third
arguments and property (27) we get

L(u(k)h )− Lh(u
(k+1)
h ) ≥ L(u(k)h )− g(u(k+1)

h )

= Fh(u
(k+1)
h − u(k)h )− 1

2
(bh(u

(k)
h ; u(k+1)

h , u(k)h )− bh(u
(k)
h ; u(k)h , u(k)h ))

= 1

2
bh(u

(k)
h ; u(k+1)

h − u(k)h , u(k+1)
h − u(k)h ) � ‖u(k+1)

h − u(k)h ‖2
1,h .

So we can conclude that

‖u(k+1)
h − u(k)h ‖1,h → 0, (38)

as k tends to +∞. Next, we prove that the sequence {u(k)h }k≥0 converges to the solution
uh , as  k tends to +∞. By using (36), (34) and that uh is the solution of problem (21) 
we have



‖u(k)h − uh‖2
1,h � 〈E ′

h(u
(k)
h )− E ′

h(uh), u(k)h − uh〉
≤ 〈E ′

h(u
(k)
h ), u(k)h − uh〉 + Fh(uh − u(k)h )

= bh(u
(k)
h ; u(k)h , u(k)h − uh)+ Fh(uh − u(k)h ). (39)

Then, by using twice (32) we get

bh(u
(k)
h ; u(k)h , u(k)h − uh)+ Fh(uh − u(k)h )

= bh(u
(k)
h ; u(k)h − u(k+1)

h , u(k)h − uh)± bh(u
(k)
h ; u(k+1)

h , u(k+1)
h − u(k)h )

= bh(u
(k)
h ; u(k)h − u(k+1)

h , u(k)h − uh + u(k+1)
h )+ Fh(u

(k+1)
h − u(k)h ).

Finally, by inserting the above estimate into (39), using (26) and that
|Fh(vh)| � ‖ f ‖L2(Ω)‖vh‖1,h we get

‖u(k)h − uh‖2
1,h � ‖u(k+1)

h − u(k)h ‖1,h

(
‖u(k)h − uh + u(k+1)

h ‖1,h + ‖ f ‖L2(Ω)

)
.

(40)

The proof is complete by observing that the quantity ‖u(k)h − uh + u(k+1)
h ‖1,h is

bounded from above since each term is bounded thanks to the well-posedness of
problem (21) and of the corresponding linearized ones (see Proposition 7). Therefore,
thanks to (38) we get ‖u(k)h − uh‖ → 0 as k tends to ∞.

The following result, stemming from the approach described in [35], contains a
computable estimate for the error ‖uh − u(k)h ‖1,h , which can be employed as a reliable
stopping criterion for the Kačanov method (see also Sect. 6 for further details).

Proposition 4 Assume the function κ(·) satisfies Assumption 21 and also κ ′(t) ≤ 0
and 2κ ′(t)t + κ(t) � 1. Then

‖uh − u(k)h ‖2
1,h � Eh(u

(k)
h )− Fh(u

(k)
h )+ E∗

h (p
∗
h)

where p∗
h |E := κ(GE

h (u
(k−1)
h ))(AE

h )
1/2 u(k)h |E , and the conjugate functional E∗

h (·) is
defined as

E∗
h (p

∗
h) :=

∑
E∈Ωh

|E |β∗
(√

GE
h (p

∗
h)

)
.

Here, β∗(s∗) := κ(s2)s2 − β(s) for every s∗ ∈ R being s = s(s∗) the unique
solution to the algebraic equation

β ′(s) = s∗.



Proof Setting, as before, Lh(·) := Eh(·)− Fh(·), we first observe that it holds

Dh(u
(k)
h ) := Lh(u

(k)
h )− Lh(uh)− 〈L′

h(uh), u(k)h − uh〉

=
1∫

0

(1 − t)〈L′′
h(uh + t (u(k)h − uh))(u

(k)
h − uh), u(k)h − uh〉dt, (41)

where the second order Fréchet derivative satisfies

〈L′′
h(uh)vh, vh〉 =

∑
E

2κ ′
⎛
⎝‖uh‖2

A
E
h

|E |

⎞
⎠ (aE

h (uh, vh))
2

|E | + κ

⎛
⎝‖uh‖2

A
E
h

|E |

⎞
⎠ aE

h (vh, vh)

�
∑

E

⎛
⎝2κ ′

⎛
⎝‖uh‖2

A
E
h

|E |

⎞
⎠ ‖uh‖2

1,h,E

|E | + κ

⎛
⎝‖uh‖2

A
E
h

|E |

⎞
⎠
⎞
⎠ ‖vh‖2

1,h,E

� ‖vh‖2
1,h, (42)

where we used Proposition 2 together with the fact that κ ′(z) ≤ 0 and 2κ ′(t)t + κ(t) �
1. Observing that uh is the unique solution to (21) yields 〈L′

h(uh), vh〉 = 0 for every
vh ∈ Vh . Hence, combining (41) and (42) we get

Lh(u
(k)
h )− Lh(uh) = Dh(u

(k)
h ) � ‖u(k)h − uh‖2

1,h . (43)

Using the standard theory of duality in optimization (see, e.g., [31, Ch. 3],[46, Sec.
51.5] or [35, Sec. 2.7] for a general introduction) and following the approach outlined
in [35, Sec. 5.3] (see also [46, Theorem 51.B] and [47, Theorem 25.K] for similar
results), we obtain

Lh(u
(k)
h )− Lh(uh) ≤ Lh(u

(k)
h )+ E∗

h (p
∗
h), (44)

where it is crucial to observe that p∗
h has been chosen to solve the linear elliptic

problem pT
h A

1/2
h vh = F(vh) for every vh ∈ Vh . A closer inspection reveals that p∗

h is
indeed the solution of the k-th linearized problem (32). Finally, combining (43) and
(44) yields the thesis.

Remark 4 It is easy to see that the Carreau law defined in (4) satisfies the assumptions
on the function κ(·) of Proposition 4.

We conclude this section by observing that Theorems 1 and 2 can be combined to
obtain an estimate of the error ‖uI − u(k)h ‖1,h .

Corollary 2 Let uI ∈ Vh be the interpolation of the exact solution of problem (3) as
defined in (14). Then, for every h > 0 there exists k ∈ N, k = k(h), such that

‖uI − u(k)h ‖1,h � O(h)+ ‖uh − u(k)h ‖1,h,



Fig. 1 Examples of the considered decompositions of Ω = (0, 1)2. From left to right: hexagons type1,
hexagons type2, quadrilaterals and trapezes

where u(k)h ∈ Vh is the k-th iterate obtained with the Kačanov method (32).

6 Numerical experiments

This section is devoted to investigate the performance of the MFD method for the
approximate solution of problem (3) and to validate the convergence analysis stated
in Theorem 2.

Throughout the section, the function κ(·) is chosen equal to the Carreau law defined
in (4), with η0 = 3, η∞ = 1 and p = 1.7. We consider four different sequences of
decompositions of the domain Ω = (0, 1)2. Figure 1 shows an example of all the
considered computational grids, that we denote by hexagons type1, hexagons type2,
quadrilaterals and trapezes, respectively.

To solve problem (21) we have employed the feasible Kačanov method supple-
mented with a suitable stopping criterion, as shown in Algorithm 6.1. The tolerance
in the stopping criterion has been set equal to 10−8. We remark that, the reliability
of the stopping criterion is justified in view of inequality (40). Alternatively, one can
resort to the computable estimate presented in Proposition 4.

6.1 Example 1

In the first example we choose u(x, y) = log(1+x+y)+x+y as the exact solution and
set the data and the non-homogeneous boundary conditions accordingly. The relative
errors in the discrete norm (13) computed on all the sequences of the considered grids
are reported in Fig. 2a (loglog scale). We clearly observe a linear convergence as
predicted by our a-priori error estimates stated in Theorem 2.
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Fig. 2 Computed relative errors ‖uI − uh‖1,h/‖uI‖1,h versus 1/h (loglog scale). Example 1 (left) and
Example 2 (right)

6.2 Example 2

The second example is taken from [37]. Here, the source term f is selected so that
u(x, y) = x(1 − x)y(1 − y)(1 − 2y) exp(−20((2x − 1)2)) is the analytical solution
of problem (21). The numerical results are reported in Fig. 2b, where the computed
relative errors in the discrete norm defined in (13) are shown (loglog scale). Also in
this case, we observe that the error goes to zero linearly as the mesh is refined.

6.3 On Assumption (28)

Finally, we check numerically the validity of hypothesis (28) in Theorem 1. On the
sequence of considered grids, we have computed the quantity

∥∥∥κ
(
Π0 |∇u|2

)
− κ(GE

h (uI))
∥∥∥∞,h

,

whereΠ0 denotes the projection onto the space of piecewise constant functions defined
onΩh , uI is the interpolation of the exact solutions of Examples 6.1 and 6.2, respec-
tively, and

‖vh‖∞,h := sup
v∈Nh

|vv
h |∀vh ∈ Vh .

The computed results are reported in Fig. 3. From the numerical results it seems that

‖κ
(
Π0 |∇u|2

)
− κ(GE

h (uI))‖∞,h � h.

This, together with standard interpolation error estimates suggests the validity of (28) 
with α = 1.
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Fig. 3
∥∥∥κ

(
�0 |∇u|2

)
− κ(GE

h (uI))
∥∥∥∞,h

versus 1/h (loglog scale). Here u is the exact solution of Exam-

ple 1 (left) and Example 2 (right)

7 Conclusions

We have proposed a MFD discretization of a quasilinear elliptic problem. Under a
suitable approximation assumption, we have shown optimal a-priori error estimates
in a mesh-dependent energy norm. A Kačanov iterative scheme has been proposed
and analyzed to solve the resulting nonlinear discrete problem. All the theoretical
results have been confirmed by numerical experiments. Future research will be devoted
to extend the presented results to (free-boundary) quasi-newtonian flow problems
governed by the non-linear Stokes equations by taking advantage of the Uzawa iterative
algorithm, where at each step a quasilinear elliptic problem similar to (1) has to be
solved.
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