This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) within the Gamma project. The SDDs, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories, are designed as monolithic arrays of 3 x 3 units, each one of an active area of 8mm x 8mm (overall area of 26mm x 26 mm). The readout electronics and the architecture of the camera are briefly described and then first experimental results coupling the SDD array with a 1" x 1" LaBr3:Ce scintillator are reported. An energy resolution of 3% FWHM at 662 keV has been measured at -20 degrees C, better than coupling the same scintillator with a photomultiplier tube. The same scintillator is also used to evaluate position sensitivity with a 1mm collimated Cs-137 source. The main difficulty in determining the position of the gamma-ray interaction in the crystal is associated to the high thickness/diameter ratio of the crystal (1:1) and the use of reflectors on all lateral and top sides the crystal. This last choice enhances energy resolution but makes imaging capability more challenging because light is spread over all photodetectors. Preliminary results show that the camera is able to detect shifts in the measured signals, when the source is moved with steps of 5 mm. A modified version of the centroid method is finally implemented to evaluate the imaging capability of the system.
Development of a detector based on Silicon Drift Detectors for gamma-ray spectroscopy and imaging applications
BUSCA, PAOLO;BUTT, ARSLAN DAWOOD;FIORINI, CARLO ETTORE;MARONE, ALESSANDRO;OCCHIPINTI, MICHELE;PELOSO, ROBERTA;QUAGLIA, RICCARDO;BOMBELLI, LUCA;
2014-01-01
Abstract
This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) within the Gamma project. The SDDs, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories, are designed as monolithic arrays of 3 x 3 units, each one of an active area of 8mm x 8mm (overall area of 26mm x 26 mm). The readout electronics and the architecture of the camera are briefly described and then first experimental results coupling the SDD array with a 1" x 1" LaBr3:Ce scintillator are reported. An energy resolution of 3% FWHM at 662 keV has been measured at -20 degrees C, better than coupling the same scintillator with a photomultiplier tube. The same scintillator is also used to evaluate position sensitivity with a 1mm collimated Cs-137 source. The main difficulty in determining the position of the gamma-ray interaction in the crystal is associated to the high thickness/diameter ratio of the crystal (1:1) and the use of reflectors on all lateral and top sides the crystal. This last choice enhances energy resolution but makes imaging capability more challenging because light is spread over all photodetectors. Preliminary results show that the camera is able to detect shifts in the measured signals, when the source is moved with steps of 5 mm. A modified version of the centroid method is finally implemented to evaluate the imaging capability of the system.File | Dimensione | Formato | |
---|---|---|---|
pdf.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
Development of a detector based on Silicon Drift_11311-968717_Fiorini.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.