Over recent years, long-term climate forecast from global circulation models (GCMs) has been demonstrated to show increasing skills over the climatology, thanks to the advances in the modelling of coupled ocean-atmosphere dynamics. Improved information from long-term forecast is supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping time) and for more effectively coping with the adverse impacts of climate variability. Yet, evaluating how valuable this information can be is not straightforward and farmers' response must be taken into consideration. Indeed, while long-range forecast are traditionally evaluated in terms of accuracy by comparison of hindcast and observed values, in the context of agricultural systems, potentially useful forecast information should alter the stakeholders' expectation, modify their decisions and ultimately have an impact on their annual benefit. Therefore, it is more desirable to assess the value of those long-term forecasts via decision-making models so as to extract direct indication of probable decision outcomes from farmers, i.e. from an end-to-end perspective. In this work, we evaluate the operational value of thirteen state-of-the-art long-range forecast ensembles against climatology forecast and subjective prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of farmers' behavior. Collected ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in order to address the mismatch of the spatio-temporal scale between forecast data from GCMs and distributed crop simulation model. The agronomic model is first simulated using the forecast information (ex-ante), followed by a second run with actual climate (ex-post). Multi-year simulations are performed to account for climate variability and the value of the different climate forecast is evaluated against the perfect foresight scenario based on the expected crop productivity as well as the land-use decisions. Our results show that not all the products generate beneficial effects to farmers and that the forecast errors might be amplified by the farmers decisions.

Assessing the Value of Post-processed State-of-the-art Long-term Weather Forecast Ensembles within An Integrated Agronomic Modelling Framework

LI, YU;CASTELLETTI, ANDREA FRANCESCO;GIULIANI, MATTEO
2014

Abstract

Over recent years, long-term climate forecast from global circulation models (GCMs) has been demonstrated to show increasing skills over the climatology, thanks to the advances in the modelling of coupled ocean-atmosphere dynamics. Improved information from long-term forecast is supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping time) and for more effectively coping with the adverse impacts of climate variability. Yet, evaluating how valuable this information can be is not straightforward and farmers' response must be taken into consideration. Indeed, while long-range forecast are traditionally evaluated in terms of accuracy by comparison of hindcast and observed values, in the context of agricultural systems, potentially useful forecast information should alter the stakeholders' expectation, modify their decisions and ultimately have an impact on their annual benefit. Therefore, it is more desirable to assess the value of those long-term forecasts via decision-making models so as to extract direct indication of probable decision outcomes from farmers, i.e. from an end-to-end perspective. In this work, we evaluate the operational value of thirteen state-of-the-art long-range forecast ensembles against climatology forecast and subjective prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of farmers' behavior. Collected ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in order to address the mismatch of the spatio-temporal scale between forecast data from GCMs and distributed crop simulation model. The agronomic model is first simulated using the forecast information (ex-ante), followed by a second run with actual climate (ex-post). Multi-year simulations are performed to account for climate variability and the value of the different climate forecast is evaluated against the perfect foresight scenario based on the expected crop productivity as well as the land-use decisions. Our results show that not all the products generate beneficial effects to farmers and that the forecast errors might be amplified by the farmers decisions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/962483
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact