The power-wall problem driven by the stagnation of supply voltages in deep-submicron technology nodes, is now the major scaling barrier for moving towards the manycore era. Although the technology scaling enables extreme volumes of computational power, power budget violations will permit only a limited portion to be actually exploited, leading to the so called dark silicon. Near-Threshold voltage Computing (NTC) has emerged as a promising approach to overcome the manycore power-wall, at the expenses of reduced performance values and higher sensitivity to process variations. Given that several application domains operate over specific performance constraints, the performance sustainability is considered a major issue for the wide adoption of NTC. Thus, in this paper, we investigate how performance guarantees can be ensured when moving towards NTC manycores through variability-aware voltage and frequency allocation schemes. We propose three aggressive NTC voltage tuning and allocation strategies, showing that STC performance can be efficiently sustained or even optimized at the NTC regime. Finally, we show that NTC highly depends on the underlying workload characteristics, delivering average power gains of 65% for thread-parallel workloads and up to 90% for process-parallel workloads, while offering an extensive analysis on the effects of different voltage tuning/allocation strategies and voltage regulator configurations.

Voltage island management in near threshold manycore architectures to mitigate dark silicon

SILVANO, CRISTINA;PALERMO, GIANLUCA;STAMELAKOS, IOANNIS
2014-01-01

Abstract

The power-wall problem driven by the stagnation of supply voltages in deep-submicron technology nodes, is now the major scaling barrier for moving towards the manycore era. Although the technology scaling enables extreme volumes of computational power, power budget violations will permit only a limited portion to be actually exploited, leading to the so called dark silicon. Near-Threshold voltage Computing (NTC) has emerged as a promising approach to overcome the manycore power-wall, at the expenses of reduced performance values and higher sensitivity to process variations. Given that several application domains operate over specific performance constraints, the performance sustainability is considered a major issue for the wide adoption of NTC. Thus, in this paper, we investigate how performance guarantees can be ensured when moving towards NTC manycores through variability-aware voltage and frequency allocation schemes. We propose three aggressive NTC voltage tuning and allocation strategies, showing that STC performance can be efficiently sustained or even optimized at the NTC regime. Finally, we show that NTC highly depends on the underlying workload characteristics, delivering average power gains of 65% for thread-parallel workloads and up to 90% for process-parallel workloads, while offering an extensive analysis on the effects of different voltage tuning/allocation strategies and voltage regulator configurations.
2014
Proceedings of DATE 2014 - International Conference on Design, Automation and Test in Europe
9783981537024
9783981537024
Near Threshold Computing, computer architecture, voltage islands, low-power design, power-wall
File in questo prodotto:
File Dimensione Formato  
DATENTC.pdf

Accesso riservato

Descrizione: ARticolo Principale
: Publisher’s version
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/961169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 3
social impact