This work aimed at studying the feasibility of time-resolved reflectance spectroscopy (TRS) to nondestructively detect internal browning (IB) in ‘Braeburn’ apples through the development of classification models based on absorption (ua) and scattering (us') properties of the pulp.This research was carried out in two seasons: in 2009, apples were measured by TRS at 670 nm and inthe 740–1040 nm spectral range on four equidistant points around the equator, whereas in 2010 appleswere measured by TRS at 670 nm and at 780 nm on eight equidistant points. The values of the absorption coefficients measured in the 670–940 nm range increased with IB devel-opment. On the contrary, us'780 was higher in healthy fruit than in IB ones. The ua780 also significantlyincreased with IB severity, showing high values when IB affected the pulp tissues compared to the coreones. Also ua670 changed with IB development, but it was not able to clearly discriminate healthy fruitfrom IB ones because its value was also affected by the chlorophyll content of the pulp. The absorption and scattering coefficients were used as explanatory variables in the linear discriminant analysis in order to classify each apple tissue as healthy or IB; then the models obtained were used forfruit classification. The best classification performance was obtained in 2010 using ua780 and us'780and considering the IB position within the fruit: 90% of healthy fruit and 71% of IB fruit were correctly classified. By using all the ua measured in the 670–1040 nm range plus the us'780, IB fruit classification was slightly better while healthy fruit classification was worse. The better result of 2010 was due tothe increased number of TRS measurement points that allowed better exploration of the fruit tissues. However, the asymmetric nature of this disorder makes detection difficult, especially when the disorderis localized in the inner part of the fruit (core) or when it occurs in spots. A different TRS set-up (position and distance of fibers, time resolution) should be studied in order to reach the deeper tissue within the fruit in order to improve browning detection.

Studies on classification models to discriminate ‘Braeburn’ apples affected by internal browning using the optical properties measured by time-resolved reflectance spectroscopy

VANOLI, MARISTELLA;SPINELLI, LORENZO;TORRICELLI, ALESSANDRO
2014-01-01

Abstract

This work aimed at studying the feasibility of time-resolved reflectance spectroscopy (TRS) to nondestructively detect internal browning (IB) in ‘Braeburn’ apples through the development of classification models based on absorption (ua) and scattering (us') properties of the pulp.This research was carried out in two seasons: in 2009, apples were measured by TRS at 670 nm and inthe 740–1040 nm spectral range on four equidistant points around the equator, whereas in 2010 appleswere measured by TRS at 670 nm and at 780 nm on eight equidistant points. The values of the absorption coefficients measured in the 670–940 nm range increased with IB devel-opment. On the contrary, us'780 was higher in healthy fruit than in IB ones. The ua780 also significantlyincreased with IB severity, showing high values when IB affected the pulp tissues compared to the coreones. Also ua670 changed with IB development, but it was not able to clearly discriminate healthy fruitfrom IB ones because its value was also affected by the chlorophyll content of the pulp. The absorption and scattering coefficients were used as explanatory variables in the linear discriminant analysis in order to classify each apple tissue as healthy or IB; then the models obtained were used forfruit classification. The best classification performance was obtained in 2010 using ua780 and us'780and considering the IB position within the fruit: 90% of healthy fruit and 71% of IB fruit were correctly classified. By using all the ua measured in the 670–1040 nm range plus the us'780, IB fruit classification was slightly better while healthy fruit classification was worse. The better result of 2010 was due tothe increased number of TRS measurement points that allowed better exploration of the fruit tissues. However, the asymmetric nature of this disorder makes detection difficult, especially when the disorderis localized in the inner part of the fruit (core) or when it occurs in spots. A different TRS set-up (position and distance of fibers, time resolution) should be studied in order to reach the deeper tissue within the fruit in order to improve browning detection.
2014
Internal browning; Absorption coefficient; Reduced scattering coefficient; Apple; Models; Nondestructive technique
File in questo prodotto:
File Dimensione Formato  
Vanoli_PBT_2014_full_text_NON_PUBBLICO.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri
Paper Braeburn_v10.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 912.07 kB
Formato Adobe PDF
912.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/952764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 26
social impact