A new algorithm based on differential algebra is proposed to obtain a high-order Taylor expansion of the state-dependent Riccati equation solution. The main advantage of this approach is that the suboptimal solution of a class of nonlinear optimal control problems, characterized by a quadratic cost function and an input-affine plant model, is obtained by a mere evaluation of a polynomial expression, reducing the computational effort due to a well-known algorithm for the state-dependent Riccati equation solution. A relative position tracking and attitude synchronization problem involving docking maneuvering operations between two Earth satellites is investigated. Particularly, two possible docking scenarios are simulated by using a specific platform designed by DLR, German Aerospace Center, Institute of Space Systems to emulate the satellite motion on ground. The experiments show the effectiveness of the proposed differential-algebra-based algorithm and the potential computational benefit when it runs on real hardware.
Nonlinear Control for Proximity Operations Based on Differential Algebra
DI MAURO, GIUSEPPE;LAVAGNA, MICHÈLE
2015-01-01
Abstract
A new algorithm based on differential algebra is proposed to obtain a high-order Taylor expansion of the state-dependent Riccati equation solution. The main advantage of this approach is that the suboptimal solution of a class of nonlinear optimal control problems, characterized by a quadratic cost function and an input-affine plant model, is obtained by a mere evaluation of a polynomial expression, reducing the computational effort due to a well-known algorithm for the state-dependent Riccati equation solution. A relative position tracking and attitude synchronization problem involving docking maneuvering operations between two Earth satellites is investigated. Particularly, two possible docking scenarios are simulated by using a specific platform designed by DLR, German Aerospace Center, Institute of Space Systems to emulate the satellite motion on ground. The experiments show the effectiveness of the proposed differential-algebra-based algorithm and the potential computational benefit when it runs on real hardware.File | Dimensione | Formato | |
---|---|---|---|
DIMAG01-15.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
5.52 MB
Formato
Adobe PDF
|
5.52 MB | Adobe PDF | Visualizza/Apri |
Nonlinear Control for Proximity Operations Based on Differential Algebra_11311-940961_Lavagna.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
5.53 MB
Formato
Adobe PDF
|
5.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.