In this paper is presented a study on the effects of physical treatments, namely electron beam irradiation or fluorination, on a perfluoropolymer copolymer of tetrafluoroethylene with 2,2,4-trifluoro-5-trifluoro- methoxy-1,3-dioxole (Hyflon AD copolymer). The analysis has been carried out by means of IR spectroscopy and quantum chemical modeling based on density functional theory; this combined experimental/theoretical approach has proven effective for the interpretation of previously unassigned IR bands, which are associated to functional groups generated by polymer degradation and chain scission. We performed a systematic screening of chemical groups and structures compatible with degradation pathways that are possible from the chemical point of view: the chemical mechanisms and the correlation with the spectroscopic experimental data (both frequency and intensity) provide guidelines in understanding the phenomena. Moreover, the spectroscopic experimental/theoretical and chemical approaches allowed us to identify some chemical structures responsible for the unassigned IR bands in the C@O stretching frequency region above 1800 cmÀ1, which is typical for carbonyl groups in fluorinated systems.
Chemical modification of Hyflon® AD copolymer end groups by means of physical and chemical treatments. A joint spectroscopic and quantum chemical investigation
MILANI, ALBERTO;CASTIGLIONI, CHIARA
2015-01-01
Abstract
In this paper is presented a study on the effects of physical treatments, namely electron beam irradiation or fluorination, on a perfluoropolymer copolymer of tetrafluoroethylene with 2,2,4-trifluoro-5-trifluoro- methoxy-1,3-dioxole (Hyflon AD copolymer). The analysis has been carried out by means of IR spectroscopy and quantum chemical modeling based on density functional theory; this combined experimental/theoretical approach has proven effective for the interpretation of previously unassigned IR bands, which are associated to functional groups generated by polymer degradation and chain scission. We performed a systematic screening of chemical groups and structures compatible with degradation pathways that are possible from the chemical point of view: the chemical mechanisms and the correlation with the spectroscopic experimental data (both frequency and intensity) provide guidelines in understanding the phenomena. Moreover, the spectroscopic experimental/theoretical and chemical approaches allowed us to identify some chemical structures responsible for the unassigned IR bands in the C@O stretching frequency region above 1800 cmÀ1, which is typical for carbonyl groups in fluorinated systems.File | Dimensione | Formato | |
---|---|---|---|
radice_JMS2015.pdf
Accesso riservato
:
Pre-Print (o Pre-Refereeing)
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.