In this study oedometric compression tests of hydrocarbon coke, Fontainebleau sand and silica sand are simulated in three dimensions using breakable particles. The method adapts a rigorous breakage criterion for elasto-brittle spheres to represent failure of grains isolated between platens or within granular masses. The breakage criterion allows for the effect of particle bulk and contact properties to be treated separately. A discrete fragmentation multigenerational approach is applied as a spawning procedure. The number of particles quickly increases during the simulation, but is kept manageable by systematic fine exclusion and upscaling. Fine exclusion leads to mass losses between generations, but that loss is accounted for outside the mechanical model. Sensitivity analysis shows that it is enough to keep 53% of the crushed particle mass within the mechanical model to correctly reproduce experimental macroscopic behaviour. Practical upscaling rules are proposed for (a) contact stiffness, (b) breakage criteria and (c) grain size distribution, and validated simulating the same test, reducing by half the initial number of particles. The results are promising as both the mechanical and grading evolution are well captured with two orders of magnitude savings in computing efficiency.

An approach to enhance efficiency of DEM modelling of soils with crushable grains

CALVETTI, FRANCESCO;
2015-01-01

Abstract

In this study oedometric compression tests of hydrocarbon coke, Fontainebleau sand and silica sand are simulated in three dimensions using breakable particles. The method adapts a rigorous breakage criterion for elasto-brittle spheres to represent failure of grains isolated between platens or within granular masses. The breakage criterion allows for the effect of particle bulk and contact properties to be treated separately. A discrete fragmentation multigenerational approach is applied as a spawning procedure. The number of particles quickly increases during the simulation, but is kept manageable by systematic fine exclusion and upscaling. Fine exclusion leads to mass losses between generations, but that loss is accounted for outside the mechanical model. Sensitivity analysis shows that it is enough to keep 53% of the crushed particle mass within the mechanical model to correctly reproduce experimental macroscopic behaviour. Practical upscaling rules are proposed for (a) contact stiffness, (b) breakage criteria and (c) grain size distribution, and validated simulating the same test, reducing by half the initial number of particles. The results are promising as both the mechanical and grading evolution are well captured with two orders of magnitude savings in computing efficiency.
2015
discrete-element modelling; particle crushing/crushability; particle-scale behaviour
File in questo prodotto:
File Dimensione Formato  
Ciantia_Arroyo_Calvetti_Gens_Geotechnique_2015.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri
Approach to enhance efficiency of DEM modelling of soils_11311-915555_Calvetti.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/915555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 176
  • ???jsp.display-item.citation.isi??? 137
social impact