Giant Magnetostrictive Actuators (GMA) can be profitably used in application of vibration control on smart structures. In this field, the use of inertial actuators based on magnetostrictive materials has been consolidate. Such devices turn out to be very effective in applications of vibration control, since they can be easily paired with sensors able to ensure the feedback signal necessary to perform the control action. Unlike most widespread applications, this paper studies the use of patch magnetostrictive actuators. They are made of a sheet of magnetostrictive material, rigidly constrained to the structure, and wrapped in a solenoid whose purpose is to change the intensity of the magnetic field within the material itself. The challenge in the use of such devices resides in the impossibility of having co-located sensors. This limit may be exceeded by using strain gauge sensors to measure the deformation of the structure at the actuator. This work analyzes experimentally the opportunity of introducing, inside a composite material structure, both the conventional electric strain gauges and the less conventional optical sensors based on Bragg’s gratings. The performance of both solutions are analyzed with particular reference to the signal to noise ratio, the resolution of the sensors, the sensitivity to variations of the electric and magnetic fields and the temperature change associated with the operation of the actuator.

On the use of electrical and optical strain gauges paired to magnetostrictive patch actuators

BRAGHIN, FRANCESCO;CINQUEMANI, SIMONE;CAZZULANI, GABRIELE;COMOLLI, LORENZO
2014-01-01

Abstract

Giant Magnetostrictive Actuators (GMA) can be profitably used in application of vibration control on smart structures. In this field, the use of inertial actuators based on magnetostrictive materials has been consolidate. Such devices turn out to be very effective in applications of vibration control, since they can be easily paired with sensors able to ensure the feedback signal necessary to perform the control action. Unlike most widespread applications, this paper studies the use of patch magnetostrictive actuators. They are made of a sheet of magnetostrictive material, rigidly constrained to the structure, and wrapped in a solenoid whose purpose is to change the intensity of the magnetic field within the material itself. The challenge in the use of such devices resides in the impossibility of having co-located sensors. This limit may be exceeded by using strain gauge sensors to measure the deformation of the structure at the actuator. This work analyzes experimentally the opportunity of introducing, inside a composite material structure, both the conventional electric strain gauges and the less conventional optical sensors based on Bragg’s gratings. The performance of both solutions are analyzed with particular reference to the signal to noise ratio, the resolution of the sensors, the sensitivity to variations of the electric and magnetic fields and the temperature change associated with the operation of the actuator.
2014
Proc. SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
FBG; Bragg grating; magnetostrictive actuator; magnetostrictive patch; vibration suppression; electrical strain gauge
File in questo prodotto:
File Dimensione Formato  
NDE2014_paper_9061-114.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 180.36 kB
Formato Adobe PDF
180.36 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/869134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact