Chords and keys are among the most exhaustive descriptors of songs. In this study we focus on chord and key sequence recognition from an audio signal, in the context of pop and rock music. The system exploits a set of novel probabilistic models that describe the relationship between different aspects of music and their temporal evolution. These models are based on a set of parameters with a musical meaning. The models include two diatonic key modes, Dorian and Mixolydian, besides major and minor modes previously considered in the literature. These four key modes are the most used in western pop and rock music. In order to provide a compact representation of the chord and key sequences, three novel time-varying harmony- based features are here introduced. Given the importance of emotion characterization in music, the three features are here related to the mood perceived in songs. The method outperforms the state-of-the-art in both chord and key recognition tasks. In order to better train our parameters, we create annotations of chords and keys for a new dataset of 62 songs from the first five Robbie Williams’ albums.

Automatic chord recognition based on the probabilistic modeling of diatonic modal harmony

DI GIORGI, BRUNO;ZANONI, MASSIMILIANO;SARTI, AUGUSTO;TUBARO, STEFANO
2013

Abstract

Chords and keys are among the most exhaustive descriptors of songs. In this study we focus on chord and key sequence recognition from an audio signal, in the context of pop and rock music. The system exploits a set of novel probabilistic models that describe the relationship between different aspects of music and their temporal evolution. These models are based on a set of parameters with a musical meaning. The models include two diatonic key modes, Dorian and Mixolydian, besides major and minor modes previously considered in the literature. These four key modes are the most used in western pop and rock music. In order to provide a compact representation of the chord and key sequences, three novel time-varying harmony- based features are here introduced. Given the importance of emotion characterization in music, the three features are here related to the mood perceived in songs. The method outperforms the state-of-the-art in both chord and key recognition tasks. In order to better train our parameters, we create annotations of chords and keys for a new dataset of 62 songs from the first five Robbie Williams’ albums.
NDS '13 - Proceedings of the 8th International Workshop on Multidimensional Systems
9783800735433
File in questo prodotto:
File Dimensione Formato  
articoloBru.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 266.56 kB
Formato Adobe PDF
266.56 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/821731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact