An adaptive guidance algorithm for close approach to and precision landing on uncooperative low-gravity objects (e.g. asteroids) is proposed. The trajectory, updated by means of a minimum fuel optimal control problem solving, is expressed in a polynomial form of minimum order to satisfy a set of boundary constraints from initial and final states and attitude requirements. Optimal guidance computation, achieved with a simple two-stage compass search, is reduced to the determination of three parameters, time-of-flight, initial thrust magnitude and initial thrust angle, according to additional constraints due to actual spacecraft architecture. A NEA landing mission case is analyzed.
Semi-Analytical Guidance Algorithm for Autonomous Close Approach to Non-Cooperative Low-Gravity Targets
LUNGHI, PAOLO;LAVAGNA, MICHÈLE;ARMELLIN, ROBERTO
2014-01-01
Abstract
An adaptive guidance algorithm for close approach to and precision landing on uncooperative low-gravity objects (e.g. asteroids) is proposed. The trajectory, updated by means of a minimum fuel optimal control problem solving, is expressed in a polynomial form of minimum order to satisfy a set of boundary constraints from initial and final states and attitude requirements. Optimal guidance computation, achieved with a simple two-stage compass search, is reduced to the determination of three parameters, time-of-flight, initial thrust magnitude and initial thrust angle, according to additional constraints due to actual spacecraft architecture. A NEA landing mission case is analyzed.File | Dimensione | Formato | |
---|---|---|---|
LUNGP01-14.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.