We use the description of the Schützenberger automata for amalgams of finite inverse semigroups given by Cherubini et al. (J. Algebra 285:706–725, 2005) to obtain structural results for such amalgams. Schützenberger automata, in the case of amalgams of finite inverse semigroups, are automata with special structure possessing finite subgraphs that contain all the essential information about the automaton. Using this crucial fact, and Bass–Serre theory, we show that the maximal subgroups of an amalgamated free product are either isomorphic to certain subgroups of the original semigroups or can be described as fundamental groups of particular finite graphs of groups built from the maximal subgroups of the original semigroups.

Maximal subgroups of amalgams of finite inverse semigroups

CHERUBINI, ALESSANDRA;RODARO, EMANUELE
2015-01-01

Abstract

We use the description of the Schützenberger automata for amalgams of finite inverse semigroups given by Cherubini et al. (J. Algebra 285:706–725, 2005) to obtain structural results for such amalgams. Schützenberger automata, in the case of amalgams of finite inverse semigroups, are automata with special structure possessing finite subgraphs that contain all the essential information about the automaton. Using this crucial fact, and Bass–Serre theory, we show that the maximal subgroups of an amalgamated free product are either isomorphic to certain subgroups of the original semigroups or can be described as fundamental groups of particular finite graphs of groups built from the maximal subgroups of the original semigroups.
2015
Inverse semigroups, Amalgams, Maximal subgroups, Groups acting on trees, Automorphism of graphs.
File in questo prodotto:
File Dimensione Formato  
MaximalSF.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 324.08 kB
Formato Adobe PDF
324.08 kB Adobe PDF   Visualizza/Apri
Maximal subgroups of amalgams of finite inverse semigroups_11311-801522_Cherubini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 348.32 kB
Formato Adobe PDF
348.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/801522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact