In active vibration control of smart structures, the actuator and sensor placement is a key point of the control system design. Even the most robust control logics could easily make a structure unstable if the actuators and sensors were not correctly positioned. The objective of this paper is to propose an H2 norm approach for the actuator and sensor placement. Unlike most modal H2 norm actuator and sensor placement methodologies, this work aims not only to maximize the norms of the controlled modes but also to reduce spillover problems by taking into account the residual modes and minimizing their H2 norms. It discusses the optimal actuator and sensor configuration in a finite element model of a square plate fixed on three sides with piezoelectric patch actuators and acceleration sensors. Finally, downstream of the actuator and sensor positioning, IMSC, PPF and NDF controls have been tested and discussed.
An H2 norm approach for the actuator and sensor placement in vibration control of a smart structure
RESTA, FERRUCCIO;RIPAMONTI, FRANCESCO
2012-01-01
Abstract
In active vibration control of smart structures, the actuator and sensor placement is a key point of the control system design. Even the most robust control logics could easily make a structure unstable if the actuators and sensors were not correctly positioned. The objective of this paper is to propose an H2 norm approach for the actuator and sensor placement. Unlike most modal H2 norm actuator and sensor placement methodologies, this work aims not only to maximize the norms of the controlled modes but also to reduce spillover problems by taking into account the residual modes and minimizing their H2 norms. It discusses the optimal actuator and sensor configuration in a finite element model of a square plate fixed on three sides with piezoelectric patch actuators and acceleration sensors. Finally, downstream of the actuator and sensor positioning, IMSC, PPF and NDF controls have been tested and discussed.File | Dimensione | Formato | |
---|---|---|---|
SMS_125016.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.