We present the results of a molecular modeling study of several thiophene-based oligomers and polymers by solid state density functional theory (DFT) calculations. In particular, we consider two polymers for which limit-ordered crystal structures have been reported by our group, on the basis of powder X-ray data analysis: poly(3-(S)-2-methylbutylthiophene) (P3MBT) and forms I’ and II of poly(3-butylthiophene) (P3BT). The calculations employing the functional by Perdew and Wang (PWC) in conjunction with the double-zeta polarised numerical basis set (DNP) demonstrate that a standard quantum mechanical (QM) approach for solid phases can provide a balanced description of the overall structure and energetics of thiophene-based oligomers and polymers maintaining a moderate computational cost. In addition, the results compare well with those provided by specific force field parameterization developed by our group. In many cases PWC/DNP models show even closer agreement with experimental crystal structures, making it the method of choice for computationally accessible problems. Finally, solid state DFT minimizations confirm that the reported crystal structures of P3MBT and P3BT correspond to well-defined energy minima.

A Solid State Density Functional Study of Crystalline Thiophene-Based Oligomers and Polymers

FAMULARI, ANTONINO;RAOS, GUIDO;BAGGIOLI, ALBERTO;CASALEGNO, MOSE';MEILLE, STEFANO VALDO
2012-01-01

Abstract

We present the results of a molecular modeling study of several thiophene-based oligomers and polymers by solid state density functional theory (DFT) calculations. In particular, we consider two polymers for which limit-ordered crystal structures have been reported by our group, on the basis of powder X-ray data analysis: poly(3-(S)-2-methylbutylthiophene) (P3MBT) and forms I’ and II of poly(3-butylthiophene) (P3BT). The calculations employing the functional by Perdew and Wang (PWC) in conjunction with the double-zeta polarised numerical basis set (DNP) demonstrate that a standard quantum mechanical (QM) approach for solid phases can provide a balanced description of the overall structure and energetics of thiophene-based oligomers and polymers maintaining a moderate computational cost. In addition, the results compare well with those provided by specific force field parameterization developed by our group. In many cases PWC/DNP models show even closer agreement with experimental crystal structures, making it the method of choice for computationally accessible problems. Finally, solid state DFT minimizations confirm that the reported crystal structures of P3MBT and P3BT correspond to well-defined energy minima.
2012
Numerical-based DFT-PWC Functional; Poly(3-alkylthiophenes); Poly(3-(S)-2-methylbutylthiophene); Poly(3-butylthiophene); Sexithiophene; Quaterthiophene
File in questo prodotto:
File Dimensione Formato  
jpcB_SolidStateDFT_OligPolyThio.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/692139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact