Over the past few years there has been a growing interest in monolithic arrays of single photon avalanche diodes (SPAD) for spatially resolved detection of faint ultrafast optical signals. SPADs implemented in planar technologies offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency than PMTs and are able to provide, beside sensitivities down to single-photons, very high acquisition speeds. In order to make SPAD array more and more competitive in time-resolved application it is necessary to face problems like electrical crosstalk between adjacent pixel, moreover all the singlephoton timing electronics with picosecond resolution has to be developed. In this paper we present a new instrument suitable for single-photon imaging applications and made up of 32 timeresolved parallel channels. The 32x1 pixel array that includes SPAD detectors represents the system core, and an embedded data elaboration unit performs on-board data processing for single-photon counting applications. Photontiming information is exported through a custom parallel cable that can be connected to an external multichannel TCSPC system.

High-performance SPAD array detectors for parallel photon timing applications

RECH, IVAN;CUCCATO, ANDREA;ANTONIOLI, SEBASTIANO;CAMMI, CORRADO;GULINATTI, ANGELO;GHIONI, MASSIMO ANTONIO
2012-01-01

Abstract

Over the past few years there has been a growing interest in monolithic arrays of single photon avalanche diodes (SPAD) for spatially resolved detection of faint ultrafast optical signals. SPADs implemented in planar technologies offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency than PMTs and are able to provide, beside sensitivities down to single-photons, very high acquisition speeds. In order to make SPAD array more and more competitive in time-resolved application it is necessary to face problems like electrical crosstalk between adjacent pixel, moreover all the singlephoton timing electronics with picosecond resolution has to be developed. In this paper we present a new instrument suitable for single-photon imaging applications and made up of 32 timeresolved parallel channels. The 32x1 pixel array that includes SPAD detectors represents the system core, and an embedded data elaboration unit performs on-board data processing for single-photon counting applications. Photontiming information is exported through a custom parallel cable that can be connected to an external multichannel TCSPC system.
2012
Single Molecule Spectroscopy and Superresolution Imaging V
9780819488718
sezele; single-photon avalanche diode; SPAD array; single-photon counting; TCSPC
File in questo prodotto:
File Dimensione Formato  
2012_PW_Rech_HighPerformanceSpadArrayDetectorsForParallelPhotonTimingApplications.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 497.25 kB
Formato Adobe PDF
497.25 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/660473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact