NoC designs are based on a compromise of latency, power dissipation or energy, usually defined at design time. However, setting all parameters at design time can cause either excessive power dissipation (originated by router underutilization), or a higher latency. Moreover, routers with virtual channels have larger buffer sizes and more complex control, increasing the total costs. The situation worsens whenever the application changes its communication pattern, i.e., when a portable phone downloads a new service. In this paper we propose the use of a two-level adaptive buffer for a virtual channel router, where the buffers units and the virtual channels are dynamically allocated to increase router efficiency in a NoC, even under rather different communication loads. With the proposed architecture the buffer and virtual channels in the input channels of the routers can be adapted at run time. The adaptive virtual channel router decreases the latency in the worst case by 10%, and a reduction of 80% in the best case is achieved when compared to previous works.

Two-levels of adaptive buffer for virtual channel router in NoCs

PALERMO, GIANLUCA;SILVANO, CRISTINA
2011

Abstract

NoC designs are based on a compromise of latency, power dissipation or energy, usually defined at design time. However, setting all parameters at design time can cause either excessive power dissipation (originated by router underutilization), or a higher latency. Moreover, routers with virtual channels have larger buffer sizes and more complex control, increasing the total costs. The situation worsens whenever the application changes its communication pattern, i.e., when a portable phone downloads a new service. In this paper we propose the use of a two-level adaptive buffer for a virtual channel router, where the buffers units and the virtual channels are dynamically allocated to increase router efficiency in a NoC, even under rather different communication loads. With the proposed architecture the buffer and virtual channels in the input channels of the routers can be adapted at run time. The adaptive virtual channel router decreases the latency in the worst case by 10%, and a reduction of 80% in the best case is achieved when compared to previous works.
Proceeding of IEEE/IFIP 19th International Conference on VLSI and System-on-Chip (VLSI-SoC)
9781457701696
9781457701719
File in questo prodotto:
File Dimensione Formato  
VLSISOC11.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/633665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact