In this work we studied the performance of different numerical approaches to simulate the large amplifications of long period earthquake ground motion within the Gubbio plain, a closed-shape intra-mountain alluvial basin of extensional tectonic origin in Central Italy, observed during the Umbria-Marche 1997 seismic sequence. Particularly, referring to the Sep 26 1997Mw6.0 mainshock, we considered the following numerical approximations: (a) 3D model, including a kinematic model of the extended seismic source, a layered crustal structure, and the basin itself with a simplified homogeneous velocity profile; (b) 2D model of a longitudinal and transversal cross-section of the basin, subject to vertical and oblique incidence of plane waves with time dependence at bedrock obtained by the 3D simulations; (c) 1D model. 3D and 2D numerical simulations were carried out using the spectral element code GeoELSE, exploiting in 3D its implementation in parallel computer architectures. 3D numerical simulations were successful to predict the observed large amplification of ground motion at periods beyond about 1 s, due to the prominent onset of surface waves originated at the southern edge of the basin and propagating northwards. More specifically, the difference of 3D vs 2D results is remarkable, since the latter ones fail to approach such large amplification levels, even when an oblique incidence of plane waves is considered.

Comparison of 3D, 2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain, Central Italy

SMERZINI, CHIARA;PAOLUCCI, ROBERTO;
2011-01-01

Abstract

In this work we studied the performance of different numerical approaches to simulate the large amplifications of long period earthquake ground motion within the Gubbio plain, a closed-shape intra-mountain alluvial basin of extensional tectonic origin in Central Italy, observed during the Umbria-Marche 1997 seismic sequence. Particularly, referring to the Sep 26 1997Mw6.0 mainshock, we considered the following numerical approximations: (a) 3D model, including a kinematic model of the extended seismic source, a layered crustal structure, and the basin itself with a simplified homogeneous velocity profile; (b) 2D model of a longitudinal and transversal cross-section of the basin, subject to vertical and oblique incidence of plane waves with time dependence at bedrock obtained by the 3D simulations; (c) 1D model. 3D and 2D numerical simulations were carried out using the spectral element code GeoELSE, exploiting in 3D its implementation in parallel computer architectures. 3D numerical simulations were successful to predict the observed large amplification of ground motion at periods beyond about 1 s, due to the prominent onset of surface waves originated at the southern edge of the basin and propagating northwards. More specifically, the difference of 3D vs 2D results is remarkable, since the latter ones fail to approach such large amplification levels, even when an oblique incidence of plane waves is considered.
2011
Strong ground motion simulations; Alluvial basins; Complex site effects; Surface waves; High performance computing
File in questo prodotto:
File Dimensione Formato  
Smerzini_et_al_2011.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/608692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact