Multi-dimensional time correlated single-photon counting has reached a prominent position among analytical techniques employed in the medical and biological fields. The development of instruments able to perform temporal and spectral fluorescence analysis (sFLIM) at the same time is limited by the performance of single-photon detectors, since currently available arrays cannot simultaneously satisfy all the requirements. To face this rising quest, a fully-parallel eight-channel module, based on a monolithic single-photon avalanche diode (SPAD) array with great temporal resolution, high photon detection efficiency and low dark count rate, has been designed and fabricated. The system relies on a novel architecture of the single pixel, based on the integration of the timing pick-up circuit next to the photodetector, making the negative effects of electrical and optical crosstalk on photon timing performance negligible. To this end, the custom technological process used to fabricate the SPAD has been modified, allowing the integration of MOS transistors without impairing the structure and the performance of the detector. The single channel is complemented by an external active quenching circuit, fabricated in a standard CMOS technology, that ensures high maximum counting rate (>5 MHz) and low after-pulsing (<2%). Finally, the output timing signals are read and conditioned by proper CMOS electronics. The complete system shows a very good temporal resolution of about 45 ps (FWHM).

SPAD array module for multi-dimensional photon timing applications

CAMMI, CORRADO;GULINATTI, ANGELO;RECH, IVAN;PANZERI, FRANCESCO;GHIONI, MASSIMO ANTONIO
2012-01-01

Abstract

Multi-dimensional time correlated single-photon counting has reached a prominent position among analytical techniques employed in the medical and biological fields. The development of instruments able to perform temporal and spectral fluorescence analysis (sFLIM) at the same time is limited by the performance of single-photon detectors, since currently available arrays cannot simultaneously satisfy all the requirements. To face this rising quest, a fully-parallel eight-channel module, based on a monolithic single-photon avalanche diode (SPAD) array with great temporal resolution, high photon detection efficiency and low dark count rate, has been designed and fabricated. The system relies on a novel architecture of the single pixel, based on the integration of the timing pick-up circuit next to the photodetector, making the negative effects of electrical and optical crosstalk on photon timing performance negligible. To this end, the custom technological process used to fabricate the SPAD has been modified, allowing the integration of MOS transistors without impairing the structure and the performance of the detector. The single channel is complemented by an external active quenching circuit, fabricated in a standard CMOS technology, that ensures high maximum counting rate (>5 MHz) and low after-pulsing (<2%). Finally, the output timing signals are read and conditioned by proper CMOS electronics. The complete system shows a very good temporal resolution of about 45 ps (FWHM).
2012
sezele
File in questo prodotto:
File Dimensione Formato  
2012_JMO_Cammi_SpadArrayModuleForPhotonTimingApplications.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/607487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact