We consider the ABC dynamics, with equal density of the three species, on the discrete ring with N sites. In this case, the process is reversible with respect to a Gibbs measure with a mean field interaction that undergoes a second order phase transition. We analyze the relaxation time of the dynamics and show that at high temperature it grows at most as $N^2$ while it grows at least as $N^3$ at low temperature.
On the dynamical behavior of the ABC model
POSTA, GUSTAVO
2011-01-01
Abstract
We consider the ABC dynamics, with equal density of the three species, on the discrete ring with N sites. In this case, the process is reversible with respect to a Gibbs measure with a mean field interaction that undergoes a second order phase transition. We analyze the relaxation time of the dynamics and show that at high temperature it grows at most as $N^2$ while it grows at least as $N^3$ at low temperature.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
fulltext.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
745.26 kB
Formato
Adobe PDF
|
745.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.