In recent years, time-correlated single-photon counting techniques have been applied to time-of-flight measurements for long-distance range-finding and depth imaging. Depth imaging has been performed by obtaining timing information from an individual single-photon detector and scanning the optical field to obtain a full depth image. Typically, the measurement is made by dwelling on each individual depth pixel for a pre-defined integration time and completing the data acquisition for that pixel before steering the beam to the adjacent spatial position. We present a novel photon-counting data acquisition mode where the time-of-flight histograms for each depth pixel are gradually populated. The system repeatedly scans the same spatial frame with short per-pixel dwell times, and sufficient photon statistics are built up over many frames by cumulating photon events from all acquired frames. The technique is used to compare the depth imaging performance of two single-photon avalanche diode detectors: a novel, resonant-cavity enhanced shallow-junction device; and a commercially available thick-junction device.

Cumulative data acquisition in comparative photon-counting three-dimensional imaging

RECH, IVAN;GHIONI, MASSIMO ANTONIO;GULINATTI, ANGELO;
2011-01-01

Abstract

In recent years, time-correlated single-photon counting techniques have been applied to time-of-flight measurements for long-distance range-finding and depth imaging. Depth imaging has been performed by obtaining timing information from an individual single-photon detector and scanning the optical field to obtain a full depth image. Typically, the measurement is made by dwelling on each individual depth pixel for a pre-defined integration time and completing the data acquisition for that pixel before steering the beam to the adjacent spatial position. We present a novel photon-counting data acquisition mode where the time-of-flight histograms for each depth pixel are gradually populated. The system repeatedly scans the same spatial frame with short per-pixel dwell times, and sufficient photon statistics are built up over many frames by cumulating photon events from all acquired frames. The technique is used to compare the depth imaging performance of two single-photon avalanche diode detectors: a novel, resonant-cavity enhanced shallow-junction device; and a commercially available thick-junction device.
2011
time-correlated single-photon counting; photon statistics; three-dimensional imaging; depth profiling; sezele
File in questo prodotto:
File Dimensione Formato  
2011_JMO_Buller_CumulativeDataAcquisition.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/575891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact