A laboratory investigation is presented for undisturbed samples of a silty sand under saturated conditions. The soil was sampled from test pits south of Rüdlingen in North–East Switzerland, where a landslide triggering experiment was carried out on a steep forest slope. The aim of the work was to characterise the behaviour of the soil in triaxial tests, in the light of the possible failure mechanisms of the slope. Conventional drained and undrained triaxial tests were conducted to detect critical state conditions as well as peak shear strength as a function of confining pressure. Soil specimens were also exposed to stress paths simulating in situ water pressure increase to study the stress–strain response and to enhance the ability to predict failure conditions more accurately in the future. Possible unstable response along the stress paths analysed was investigated by means of second orderwork and strain acceleration. The results show that temporary unstable conditions may be encountered for this soil at stress ratios below ultimate failure and even below critical state line, depending on void ratio, drainage conditions and time dependent compressibility. A modified state parameter is explored as a potentially useful tool to discriminate conditions leading to eventual collapse.

A laboratory investigation on an undisturbed silty sandfrom a slope prone to landsliding

JOMMI, CRISTINA;
2010-01-01

Abstract

A laboratory investigation is presented for undisturbed samples of a silty sand under saturated conditions. The soil was sampled from test pits south of Rüdlingen in North–East Switzerland, where a landslide triggering experiment was carried out on a steep forest slope. The aim of the work was to characterise the behaviour of the soil in triaxial tests, in the light of the possible failure mechanisms of the slope. Conventional drained and undrained triaxial tests were conducted to detect critical state conditions as well as peak shear strength as a function of confining pressure. Soil specimens were also exposed to stress paths simulating in situ water pressure increase to study the stress–strain response and to enhance the ability to predict failure conditions more accurately in the future. Possible unstable response along the stress paths analysed was investigated by means of second orderwork and strain acceleration. The results show that temporary unstable conditions may be encountered for this soil at stress ratios below ultimate failure and even below critical state line, depending on void ratio, drainage conditions and time dependent compressibility. A modified state parameter is explored as a potentially useful tool to discriminate conditions leading to eventual collapse.
2010
Laboratory tests; Undisturbed silty sand; Instability; Slope analysis
File in questo prodotto:
File Dimensione Formato  
casini_etal_2010.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 985.83 kB
Formato Adobe PDF
985.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/574789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact