The physico-chemical and catalytic properties of CuO–ZnO–Al2O3, synthesised by sol–gel process (SG), impregnation method (IMP) and a combination of both preparative procedures (ISG), were comparatively studied. Samples were characterised with thermogravimetric-differential thermal analysis (TG–DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques and oxygen chemisorption. XPS study was not consistent with the bulk findings and revealed the presence of Cu2+, Cu+ and/or Cu0 species at the catalysts surface. Surface analysis revealed also that copper enrichment occurred mainly at the surface of SG and IMP solids. The reducibility of the mixed oxides catalysts was always modified with respect to that of pure copper oxides phases and the reduction of CuO was markedly affected by the presence of ZnO–Al2O3. Temperature programmed reduction (H2-TPR) analysis showed that the temperature corresponding to maximum reduction rate of copper oxide was ca. 256 °C for IMP sample and ca. 296 °C for both SG and ISG solids. These latter showing a high resistance to reduction suggest a strong interaction of copper species with ZnO–Al2O3, limiting thus copper particles sintering. CuO particle size was found to be ca. 20 nm for both SG and ISG solids and ca. 40 nm for IMP catalysts. Besides, at 300 °C SG and ISG samples showed superior amount of reversible O2 uptake with respect to IMP solids. Catalytic activity of CuO–ZnO–Al2O3 was measured with bio-ethanol steam reforming reaction. SG catalysts exhibited both high selectivity to hydrogen and high stability with time on stream than IMP and ISG catalysts. This was attributed both to the particles size of copper species, their amount on the catalytic surface and to their strong interaction with ZnO–Al2O3.

Comparative Study of the Physico-Chemical Properties of Nanocrystalline CuO–ZnO–Al2O3 Prepared from Different Precursors: Hydrogen Production by Vaporeforming of Bioethanol

MAZZOCCHIA, CARLO VITTORIO
2009-01-01

Abstract

The physico-chemical and catalytic properties of CuO–ZnO–Al2O3, synthesised by sol–gel process (SG), impregnation method (IMP) and a combination of both preparative procedures (ISG), were comparatively studied. Samples were characterised with thermogravimetric-differential thermal analysis (TG–DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques and oxygen chemisorption. XPS study was not consistent with the bulk findings and revealed the presence of Cu2+, Cu+ and/or Cu0 species at the catalysts surface. Surface analysis revealed also that copper enrichment occurred mainly at the surface of SG and IMP solids. The reducibility of the mixed oxides catalysts was always modified with respect to that of pure copper oxides phases and the reduction of CuO was markedly affected by the presence of ZnO–Al2O3. Temperature programmed reduction (H2-TPR) analysis showed that the temperature corresponding to maximum reduction rate of copper oxide was ca. 256 °C for IMP sample and ca. 296 °C for both SG and ISG solids. These latter showing a high resistance to reduction suggest a strong interaction of copper species with ZnO–Al2O3, limiting thus copper particles sintering. CuO particle size was found to be ca. 20 nm for both SG and ISG solids and ca. 40 nm for IMP catalysts. Besides, at 300 °C SG and ISG samples showed superior amount of reversible O2 uptake with respect to IMP solids. Catalytic activity of CuO–ZnO–Al2O3 was measured with bio-ethanol steam reforming reaction. SG catalysts exhibited both high selectivity to hydrogen and high stability with time on stream than IMP and ISG catalysts. This was attributed both to the particles size of copper species, their amount on the catalytic surface and to their strong interaction with ZnO–Al2O3.
2009
CuO–ZnO–Al2O3 - Sol–gel process - Reducibility - Bio-ethanol steam reforming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/568830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact