At bit rates comparable with the Brillouin shift, i.e. higher than 10 Gbit/s, the signal and the Brillouin backscattered spectra partially overlap. This implies an interaction between different scattering phenomena occurring through out the optical fiber. In particular we believe that an evaluation of how Rayleigh backscattered components of the modulated signal are subjected to Stokes gain is required. This interaction may lead to an increased backscattered power, which in turn will affect Brillouin threshold estimation. We experimentally verified a decrease of Stimulated Brillouin Scattering (SBS) threshold for 10 Gb/s NRZ-OOK signals with respect to theoretical predictions. Simulations carried out with a numerical model of SBS, accounting for Rayleigh contributions, well predict measured backscattered power levels. On the other hand we also experimentally verified that this SBS threshold decrease does not degrade transmission system performance. Indeed, measured BER curves put into evidence a penalty reduction for signal powers just before the saturation regime, which should be usefully taken into consideration in optical systems power budget planning.
Impact of Rayleigh backscattering on Stimulated Brillouin Scattering threshold evaluation for 10 Gb/s NRZ-OOK signals
FERRARIO, MADDALENA;MARAZZI, LUCIA;BOFFI, PIERPAOLO;RIGHETTI, ALDO;MARTINELLI, MARIO
2009-01-01
Abstract
At bit rates comparable with the Brillouin shift, i.e. higher than 10 Gbit/s, the signal and the Brillouin backscattered spectra partially overlap. This implies an interaction between different scattering phenomena occurring through out the optical fiber. In particular we believe that an evaluation of how Rayleigh backscattered components of the modulated signal are subjected to Stokes gain is required. This interaction may lead to an increased backscattered power, which in turn will affect Brillouin threshold estimation. We experimentally verified a decrease of Stimulated Brillouin Scattering (SBS) threshold for 10 Gb/s NRZ-OOK signals with respect to theoretical predictions. Simulations carried out with a numerical model of SBS, accounting for Rayleigh contributions, well predict measured backscattered power levels. On the other hand we also experimentally verified that this SBS threshold decrease does not degrade transmission system performance. Indeed, measured BER curves put into evidence a penalty reduction for signal powers just before the saturation regime, which should be usefully taken into consideration in optical systems power budget planning.File | Dimensione | Formato | |
---|---|---|---|
Brill_OptExp_17_18110_09.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
311.49 kB
Formato
Adobe PDF
|
311.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.