Cases of pipeline damage caused by landslides are common in coastal or mountainous regions, where a continuous monitoring/ repair activity is planned in order to maintain their serviceability. The analysis of the soil–structure interaction phenomenon can be invoked to improve the planning and design of buried pipelines, to guide monitoring, and to reduce the risk of damage or failure. Two different approaches are considered in this paper: small scale laboratory tests and numerical simulations using the distinct element method (DEM). The experimental setup consists of a box filled with sand and water. Several experiments were performed, in which the diameter and the depth of the tube varied. The numerical simulations are divided in two separate series: in the first, the numerical model is calibrated and its reliability in reproducing the experimental tests is checked; in the second series, the direction of the relative displacement between the tube and the surrounding “numerical soil” varies over the range ±90° with respect to the horizontal. In the latter, both vertical and horizontal components of the drag force are measured and the corresponding interaction diagrams are constructed. The DEM simulations provide useful information about the shape of the failure mechanisms and the force transfer within the soil.

Experimental and numerical analysis of soil-pipe interaction

CALVETTI, FRANCESCO;DI PRISCO, CLAUDIO GIULIO;NOVA, ROBERTO
2004-01-01

Abstract

Cases of pipeline damage caused by landslides are common in coastal or mountainous regions, where a continuous monitoring/ repair activity is planned in order to maintain their serviceability. The analysis of the soil–structure interaction phenomenon can be invoked to improve the planning and design of buried pipelines, to guide monitoring, and to reduce the risk of damage or failure. Two different approaches are considered in this paper: small scale laboratory tests and numerical simulations using the distinct element method (DEM). The experimental setup consists of a box filled with sand and water. Several experiments were performed, in which the diameter and the depth of the tube varied. The numerical simulations are divided in two separate series: in the first, the numerical model is calibrated and its reliability in reproducing the experimental tests is checked; in the second series, the direction of the relative displacement between the tube and the surrounding “numerical soil” varies over the range ±90° with respect to the horizontal. In the latter, both vertical and horizontal components of the drag force are measured and the corresponding interaction diagrams are constructed. The DEM simulations provide useful information about the shape of the failure mechanisms and the force transfer within the soil.
File in questo prodotto:
File Dimensione Formato  
QGT001292.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 562.76 kB
Formato Adobe PDF
562.76 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/556142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 101
social impact