The accuracy-based XCS classifier system has been shown to solve typical data mining problems in a machine-learning competitive way. However, successful applications in multistep problems, modeled by a Markov decision process, were restricted to very small problems. Until now, the temporal difference learning technique in XCS was based on deterministic updates. However, since a prediction is actually generated by a set of rules in XCS and Learning Classifier Systems in general, gradient-based update methods are applicable. The extension of XCS to gradient-based update methods results in a classifier system that is more robust and more parameter independent, solving large and difficult maze problems reliably. Additionally, the extension to gradient methods highlights the relation of XCS to other function approximation methods in reinforcement learning.

Gradient descent methods in learning classifier systems: Improving xcs performance in multistep problems

LANZI, PIER LUCA
2005-01-01

Abstract

The accuracy-based XCS classifier system has been shown to solve typical data mining problems in a machine-learning competitive way. However, successful applications in multistep problems, modeled by a Markov decision process, were restricted to very small problems. Until now, the temporal difference learning technique in XCS was based on deterministic updates. However, since a prediction is actually generated by a set of rules in XCS and Learning Classifier Systems in general, gradient-based update methods are applicable. The extension of XCS to gradient-based update methods results in a classifier system that is more robust and more parameter independent, solving large and difficult maze problems reliably. Additionally, the extension to gradient methods highlights the relation of XCS to other function approximation methods in reinforcement learning.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/555212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 52
social impact