An unbounded one-dimensional solid-on-solid model with integer heights is studied. Unbounded here means that there is no a priori restrictions on the discrete gradient of the interface. The interaction Hamiltonian of the interface is given by a finite range part, proportional to the sum of height differences, plus a part of exponentially decaying long range potentials. The evolution of the interface is a reversible Markov process. We prove that if this system is started in the center of a box of size L after a time of order L^3 it reaches, with a very large probability, the top or the bottom of the box.

Equilibrium fluctuations for a one-dimensional interface in the solid on solid approximation.

POSTA, GUSTAVO
2005-01-01

Abstract

An unbounded one-dimensional solid-on-solid model with integer heights is studied. Unbounded here means that there is no a priori restrictions on the discrete gradient of the interface. The interaction Hamiltonian of the interface is given by a finite range part, proportional to the sum of height differences, plus a part of exponentially decaying long range potentials. The evolution of the interface is a reversible Markov process. We prove that if this system is started in the center of a box of size L after a time of order L^3 it reaches, with a very large probability, the top or the bottom of the box.
2005
Interacting particles systems; Ising model; SOS.
File in questo prodotto:
File Dimensione Formato  
EJP-2005-1526.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 204.22 kB
Formato Adobe PDF
204.22 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/553878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact