Single-walled carbon nanotubes (SWNTs) are pi-conjugated, quasi-one-dimensional structures consisting of rolled-up graphene sheets that, depending on their chirality, behave as semiconductors or metals(1); owing to their unique properties, they enable groundbreaking applications in mechanics, nanoelectronics and photonics(2,3). In semiconducting SWNTs, medium-sized excitons (3-5 nm) with large binding energy and oscillator strength are the fundamental excitations(4-8); exciton wavefunction localization and one-dimensionality give rise to a strong electron-phonon coupling(9-11), the study of which is crucial for the understanding of their electronic and optical properties. Here we report on the use of resonant sub-10-fs visible pulses(12) to generate and detect, in the time domain, coherent phonons in SWNT ensembles. We observe vibrational wavepackets for the radial breathing mode (RBM) and the G mode, and in particular their anharmonic coupling, resulting in a frequency modulation of the G mode by the RBM. Quantum-chemical modelling(13) shows that this effect is due to a corrugation of the SWNT surface on photoexcitation, leading to a coupling between longitudinal and radial vibrations.

Real time observation of non-linear coherent phonon dynamics in single-walled carbon nanotubes

GAMBETTA, ALESSIO;MANZONI, CRISTIAN;CERULLO, GIULIO NICOLA;LANZANI, GUGLIELMO;
2006-01-01

Abstract

Single-walled carbon nanotubes (SWNTs) are pi-conjugated, quasi-one-dimensional structures consisting of rolled-up graphene sheets that, depending on their chirality, behave as semiconductors or metals(1); owing to their unique properties, they enable groundbreaking applications in mechanics, nanoelectronics and photonics(2,3). In semiconducting SWNTs, medium-sized excitons (3-5 nm) with large binding energy and oscillator strength are the fundamental excitations(4-8); exciton wavefunction localization and one-dimensionality give rise to a strong electron-phonon coupling(9-11), the study of which is crucial for the understanding of their electronic and optical properties. Here we report on the use of resonant sub-10-fs visible pulses(12) to generate and detect, in the time domain, coherent phonons in SWNT ensembles. We observe vibrational wavepackets for the radial breathing mode (RBM) and the G mode, and in particular their anharmonic coupling, resulting in a frequency modulation of the G mode by the RBM. Quantum-chemical modelling(13) shows that this effect is due to a corrugation of the SWNT surface on photoexcitation, leading to a coupling between longitudinal and radial vibrations.
2006
File in questo prodotto:
File Dimensione Formato  
nphys_nanotubes.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 324.66 kB
Formato Adobe PDF
324.66 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/553323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 168
social impact