The delamination failure of metallic beams reinforced by externally bonded fibres reinforced polymers (FRP) is addressed in this paper and a simplified fracture mechanics based approach for the edge delamination of the reinforcement strips is illustrated. The criterion is based on the evaluation of the energy release rate (ERR) using both analytical and numerical models. The analytical models consist of a simplified version of a ‘‘two parameters elastic foundation’’ and ‘‘transformed section’’ model while the numerical analyses refer to the modified virtual crack closure technique (MVCCT). The main aim of the paper is to establish a fracture mechanics failure criterion based on the ERR and the specific fracture energy of the bonded strips. The criterion is an alternative approach to the well known stress based method to asses the load carrying capacity of the adhesive joint. The accuracy of the simplified approaches is shown through a numerical example which refers to a steel beam strengthened by carbon fibres reinforced polymers (CFRP).

Reinforcement delamination of metallic beams strengthened by FRP strips: fracture mechanics based approach

COLOMBI, PIERLUIGI
2006-01-01

Abstract

The delamination failure of metallic beams reinforced by externally bonded fibres reinforced polymers (FRP) is addressed in this paper and a simplified fracture mechanics based approach for the edge delamination of the reinforcement strips is illustrated. The criterion is based on the evaluation of the energy release rate (ERR) using both analytical and numerical models. The analytical models consist of a simplified version of a ‘‘two parameters elastic foundation’’ and ‘‘transformed section’’ model while the numerical analyses refer to the modified virtual crack closure technique (MVCCT). The main aim of the paper is to establish a fracture mechanics failure criterion based on the ERR and the specific fracture energy of the bonded strips. The criterion is an alternative approach to the well known stress based method to asses the load carrying capacity of the adhesive joint. The accuracy of the simplified approaches is shown through a numerical example which refers to a steel beam strengthened by carbon fibres reinforced polymers (CFRP).
2006
File in questo prodotto:
File Dimensione Formato  
EFM-2006.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 299.11 kB
Formato Adobe PDF
299.11 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/552605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 50
social impact