Percutaneous replacement of the pulmonary valve is a recently developed interventional technique which involves the implantation of a valved stent in the pulmonary trunk. It relies upon careful consideration of patient anatomy for both stent design and detailed procedure planning. Medical imaging data in the form of two-dimensional scans and threedimensional interactive graphics offer only limited support for these tasks. The paper reports the results of an experimental investigation on the use of arterial models built by rapid prototyping techniques. An analysis of clinical needs has helped to specify proper requirements for such model properties as cost, strength, accuracy, elastic compliance, and optical transparency. Two different process chains, based on the fused deposition modelling technique and on the vacuum casting of thermoset resins in rubber moulds, have been tested for prototype fabrication. The use of anatomical models has allowed the cardiologist’s confidence in patient selection, prosthesis fabrication, and final implantation to be significantly improved.

Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation

ARMILLOTTA, ANTONIO;DUBINI, GABRIELE ANGELO;FERRAGINA, SILVIO;MIGLIAVACCA, FRANCESCO;SALA, GIUSEPPE;
2007-01-01

Abstract

Percutaneous replacement of the pulmonary valve is a recently developed interventional technique which involves the implantation of a valved stent in the pulmonary trunk. It relies upon careful consideration of patient anatomy for both stent design and detailed procedure planning. Medical imaging data in the form of two-dimensional scans and threedimensional interactive graphics offer only limited support for these tasks. The paper reports the results of an experimental investigation on the use of arterial models built by rapid prototyping techniques. An analysis of clinical needs has helped to specify proper requirements for such model properties as cost, strength, accuracy, elastic compliance, and optical transparency. Two different process chains, based on the fused deposition modelling technique and on the vacuum casting of thermoset resins in rubber moulds, have been tested for prototype fabrication. The use of anatomical models has allowed the cardiologist’s confidence in patient selection, prosthesis fabrication, and final implantation to be significantly improved.
2007
vascular models; rapid prototyping; fused deposition modelling; vacuum casting; stent implantation
File in questo prodotto:
File Dimensione Formato  
use of rapide prototyping armillotta.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 252.01 kB
Formato Adobe PDF
252.01 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/552347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 58
social impact