This paper proposes a new model for the partitioning and scheduling of a specification on partially dynamically reconfigurable hardware. Although this problem can be solved optimally only by tackling its subproblems jointly, the exceeding complexity of such a task leads to a decomposition into two phases. The partitioning phase is based on a new graph-theoretic approach, which aims to obtain near optimality even if performed independently from the subsequent phase. For the scheduling phase, a new integer linear programming formulation and a heuristic approach are developed. Both take into account configuration prefetching and module reuse. The experimental results show that the proposed method compares favorably with existing solutions.
Partitioning and Scheduling of Task Graphs on Partially Dynamically Reconfigurable FPGAs
REDAELLI, FRANCESCO;SANTAMBROGIO, MARCO DOMENICO;SCIUTO, DONATELLA
2009-01-01
Abstract
This paper proposes a new model for the partitioning and scheduling of a specification on partially dynamically reconfigurable hardware. Although this problem can be solved optimally only by tackling its subproblems jointly, the exceeding complexity of such a task leads to a decomposition into two phases. The partitioning phase is based on a new graph-theoretic approach, which aims to obtain near optimality even if performed independently from the subsequent phase. For the scheduling phase, a new integer linear programming formulation and a heuristic approach are developed. Both take into account configuration prefetching and module reuse. The experimental results show that the proposed method compares favorably with existing solutions.File | Dimensione | Formato | |
---|---|---|---|
549058.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.