In this study new poly(ether)urethanes (PEUs) based on aliphatic diisocyanates were synthesized with phospholipid-like residues as chain extenders. The primary objective was to prepare new polyurethanes from diisocyanates that are less toxic than the aromatic ones widely used in medical-grade polyurethanes, in order to investigate the effect of the different aromatic or aliphatic hard segment content on the final properties of the materials. Some glycerophospho residues were simultaneously introduced to enhance the hemocompatibility of these materials. Polymers were prepared by a conventional two-step solution polymerization procedure using hexamethylene diisocyanate (HDI) and dodecametilendiisocyanate (DDI) and poly(1,4-butanediol) with molecular weight 1000 to form prepolymers, which were subsequently polymerized with 1-glycerophosphorylcholine (1-GPC) or glycerophosphorylserine (GPS) to act as chain extenders. The reference polymers bearing 1,4-butandiol (BD) were also synthesized. The polymers obtained were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR), and differential scanning calorimetry (DSC). The hemocompatibility of synthesized segmented polyurethanes was preliminarily investigated by platelet-rich plasma contact studies and related scanning electron microscopy (SEM) photographs as well as by cell viability assay after cell exposure to material elutions to assess the effect of any toxic leachables coming out from the samples. Two of the polymers gave interesting results, suggesting the desirability of further investigation into their possible use in biomedical devices

New aliphatic glycerophosphoryl-containing polyurethanes: synthesis, platelet adhesion and elution cytotoxicity studies

ACETTI, DANIELA;D'ARRIGO, PAOLA;GIORDANO, CARMEN;P. MACCHI;SERVI, STEFANO;TESSARO, DAVIDE
2009-01-01

Abstract

In this study new poly(ether)urethanes (PEUs) based on aliphatic diisocyanates were synthesized with phospholipid-like residues as chain extenders. The primary objective was to prepare new polyurethanes from diisocyanates that are less toxic than the aromatic ones widely used in medical-grade polyurethanes, in order to investigate the effect of the different aromatic or aliphatic hard segment content on the final properties of the materials. Some glycerophospho residues were simultaneously introduced to enhance the hemocompatibility of these materials. Polymers were prepared by a conventional two-step solution polymerization procedure using hexamethylene diisocyanate (HDI) and dodecametilendiisocyanate (DDI) and poly(1,4-butanediol) with molecular weight 1000 to form prepolymers, which were subsequently polymerized with 1-glycerophosphorylcholine (1-GPC) or glycerophosphorylserine (GPS) to act as chain extenders. The reference polymers bearing 1,4-butandiol (BD) were also synthesized. The polymers obtained were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR), and differential scanning calorimetry (DSC). The hemocompatibility of synthesized segmented polyurethanes was preliminarily investigated by platelet-rich plasma contact studies and related scanning electron microscopy (SEM) photographs as well as by cell viability assay after cell exposure to material elutions to assess the effect of any toxic leachables coming out from the samples. Two of the polymers gave interesting results, suggesting the desirability of further investigation into their possible use in biomedical devices
2009
File in questo prodotto:
File Dimensione Formato  
IJAO Acetti 2009.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 333.34 kB
Formato Adobe PDF
333.34 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/546647
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact