Construction of buildings in the proximity to seismically active faults is restricted by clause 4.1.2 of Eurocode 8 Part 5. However, there is no clear definition of the safe distance to fault, and the uncertainty related to the location of main and secondary traces of rupture for a future event can prevent the reduction of fault-breakage related risks to acceptable levels. The diversion of the surface trace of rupture by massive structures seated on thick soil deposits can be beneficial for the risk reduction. The scope of this study is first to revise previous theoretical approaches for providing simple engineering criteria for the diversion of the surface breakage of fault rupture for shallow foundations and, secondly, to extend them to treat the case of drained soils subjected to normal or reverse fault. The applicability of these criteria, which essentially provide minimum values for the weight of structure depending on the thickness of the surface soil deposit, is discussed through comparisons with the experimental results.

Simplified theoretical approaches to earthquake fault rupture – shallow foundation interaction

PAOLUCCI, ROBERTO;
2008-01-01

Abstract

Construction of buildings in the proximity to seismically active faults is restricted by clause 4.1.2 of Eurocode 8 Part 5. However, there is no clear definition of the safe distance to fault, and the uncertainty related to the location of main and secondary traces of rupture for a future event can prevent the reduction of fault-breakage related risks to acceptable levels. The diversion of the surface trace of rupture by massive structures seated on thick soil deposits can be beneficial for the risk reduction. The scope of this study is first to revise previous theoretical approaches for providing simple engineering criteria for the diversion of the surface breakage of fault rupture for shallow foundations and, secondly, to extend them to treat the case of drained soils subjected to normal or reverse fault. The applicability of these criteria, which essentially provide minimum values for the weight of structure depending on the thickness of the surface soil deposit, is discussed through comparisons with the experimental results.
2008
Soil–structure interaction · Earthquake fault rupture · Limit analysis · Kinematic mechanisms
File in questo prodotto:
File Dimensione Formato  
Paolucci_Yilmaz_BEE_2008.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 512.55 kB
Formato Adobe PDF
512.55 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/545516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact