Vertical arrays of sealed nanofluidic channels, in which both cross-sectional dimensions are controllable down to 10 nm, were fabricated by selective side etching of a SiGe heterostructure comprised of layers of alternating Ge fractions. Capillary filling of these nanochannel arrays with fluorescent dye solutions was investigated using a confocal microscope. The feasibility of using nanochannels for size-based separation of biomolecules was demonstrated by imaging aggregates of tagged amyloid-beta peptide. The ability to integrate a large number of nanochannels shows promise for high throughput applications involving lab-on-a-chip systems.
Vertical arrays of nanofluidic channels fabricated without nanolithography
SORDAN, ROMAN;MIRANDA, ALESSIO MASSIMILIA;CHRASTINA, DANIEL;ISELLA, GIOVANNI;
2009-01-01
Abstract
Vertical arrays of sealed nanofluidic channels, in which both cross-sectional dimensions are controllable down to 10 nm, were fabricated by selective side etching of a SiGe heterostructure comprised of layers of alternating Ge fractions. Capillary filling of these nanochannel arrays with fluorescent dye solutions was investigated using a confocal microscope. The feasibility of using nanochannels for size-based separation of biomolecules was demonstrated by imaging aggregates of tagged amyloid-beta peptide. The ability to integrate a large number of nanochannels shows promise for high throughput applications involving lab-on-a-chip systems.File | Dimensione | Formato | |
---|---|---|---|
Paper_17.pdf
Accesso riservato
Descrizione: Article as published
:
Publisher’s version
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.