In this paper we introduce the concept of generalized linear equivalence between functions defined over finite fields; this can be seen as an extension of the classical criterion of linear equivalence, and it is obtained by means of a particular geometric representation of the functions. After giving the basic definitions, we prove that the known equivalence relations can be seen as particular cases of the proposed generalized relationship and that there exist functions that are generally linearly equivalent but are not such in the classical theory. We also prove that the distributions of values in the Difference Distribution Table (DDT) and in the Linear Approximation Table (LAT) are invariants of the new transformation; this gives us the possibility to find some Almost Perfect Nonlinear (APN) functions that are not linearly equivalent (in the classical sense) to power functions, and to treat them accordingly to the new formulation of the equivalence criterion.
On the generalized linear equivalence of functions over finite fields
BREVEGLIERI, LUCA ODDONE;CHERUBINI, ALESSANDRA;MACCHETTI, MARCO
2004-01-01
Abstract
In this paper we introduce the concept of generalized linear equivalence between functions defined over finite fields; this can be seen as an extension of the classical criterion of linear equivalence, and it is obtained by means of a particular geometric representation of the functions. After giving the basic definitions, we prove that the known equivalence relations can be seen as particular cases of the proposed generalized relationship and that there exist functions that are generally linearly equivalent but are not such in the classical theory. We also prove that the distributions of values in the Difference Distribution Table (DDT) and in the Linear Approximation Table (LAT) are invariants of the new transformation; this gives us the possibility to find some Almost Perfect Nonlinear (APN) functions that are not linearly equivalent (in the classical sense) to power functions, and to treat them accordingly to the new formulation of the equivalence criterion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.