Increasing the temperature of waste heat is crucial to enable its recovery. Vapor compression heat pumps and absorption heat transformers are the two heat upgrade technologies most commonly used for this purpose. Heat pumps have the advantage of entirely recovering the waste heat and the disadvantage of requiring electricity as input. Heat transformers need a negligible amount of electricity but reject at part of the waste heat input at low temperature. Due to these differences, the choice between the two options depends on the application. In this work, the environmental and economic performance of heat pumps and heat transformers are compared in some relevant applications. Indications about the most suitable technology are provided based on the availability of the waste heat, of the CO2 content of the electricity and of the electricity–gas price ratio. Heat pumps perform better when the waste heat availability is limited compared to the upgraded heat requirements and has a better environmental profile when the electricity has low carbon content. Heat transformer results are often economically convenient, especially when the availability of waste heat is large.
Absorption Heat Transformer and Vapor Compression Heat Pump as Alternative Options for Waste Heat Upgrade in the Industry
Villa, Giorgio;Abrami, Gianluca;Toppi, Tommaso
2025-01-01
Abstract
Increasing the temperature of waste heat is crucial to enable its recovery. Vapor compression heat pumps and absorption heat transformers are the two heat upgrade technologies most commonly used for this purpose. Heat pumps have the advantage of entirely recovering the waste heat and the disadvantage of requiring electricity as input. Heat transformers need a negligible amount of electricity but reject at part of the waste heat input at low temperature. Due to these differences, the choice between the two options depends on the application. In this work, the environmental and economic performance of heat pumps and heat transformers are compared in some relevant applications. Indications about the most suitable technology are provided based on the availability of the waste heat, of the CO2 content of the electricity and of the electricity–gas price ratio. Heat pumps perform better when the waste heat availability is limited compared to the upgraded heat requirements and has a better environmental profile when the electricity has low carbon content. Heat transformer results are often economically convenient, especially when the availability of waste heat is large.| File | Dimensione | Formato | |
|---|---|---|---|
|
energies-18-03454.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.45 MB
Formato
Adobe PDF
|
4.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


