Recent advancements in Hollow Core Fibers (HCF) production are paving the way toward new ground-breaking opportunities of HCF for 6G-and-beyond applications. While Standard Single-Mode Fibers (SSMF) have been the go-to solution in optical communications for the past 50 years, HCF is expected to be a turning point in how next-generation optical networks are planned and designed. Compared to SSMF, in which the optical signal is transmitted in a silica core, in HCF, the optical signal is transmitted in a hollow, i.e., air, core, significantly reducing latency (by 30%), while also decreasing attenuation (as low as 0.11 dB/km) and non-linearities. In this study, we investigate the optimal placement of HCF in latency-constrained optical networks to minimize the number of edge Data Centers (edgeDCs), while also ensuring physical-layer validation. Given the optimized placement of HCF and edgeDCs, we minimize the overall network cost in terms of transponders (TXPs) and Wavelength Selective Switches (WSSes) by optimizing the type, number, and transmission mode of TXPs, and the type and number of WSSes. We develop a Mixed Integer Nonlinear Programming (MINLP) model and a Genetic Algorithm (GA) to solve these problems. We validate the GA against the MINLP model in four synthetically generated topologies and perform extensive numerical evaluations in a realistic 25-node metro aggregation topology and a 22-node national topology. We show that by upgrading 25% of the links to HCF, we can significantly reduce the number of edgeDCs by up to 40%, while also reducing network equipment cost by up to 38%, compared to an SSMF-only network.
Hollow-Core Fibers for Latency-Constrained and Low-Cost Edge Data Center Networks
Sticca, Giovanni Simone;Ibrahimi, Mëmëdhe;Musumeci, Francesco;Cicco, Nicola Di;Tornatore, Massimo
2025-01-01
Abstract
Recent advancements in Hollow Core Fibers (HCF) production are paving the way toward new ground-breaking opportunities of HCF for 6G-and-beyond applications. While Standard Single-Mode Fibers (SSMF) have been the go-to solution in optical communications for the past 50 years, HCF is expected to be a turning point in how next-generation optical networks are planned and designed. Compared to SSMF, in which the optical signal is transmitted in a silica core, in HCF, the optical signal is transmitted in a hollow, i.e., air, core, significantly reducing latency (by 30%), while also decreasing attenuation (as low as 0.11 dB/km) and non-linearities. In this study, we investigate the optimal placement of HCF in latency-constrained optical networks to minimize the number of edge Data Centers (edgeDCs), while also ensuring physical-layer validation. Given the optimized placement of HCF and edgeDCs, we minimize the overall network cost in terms of transponders (TXPs) and Wavelength Selective Switches (WSSes) by optimizing the type, number, and transmission mode of TXPs, and the type and number of WSSes. We develop a Mixed Integer Nonlinear Programming (MINLP) model and a Genetic Algorithm (GA) to solve these problems. We validate the GA against the MINLP model in four synthetically generated topologies and perform extensive numerical evaluations in a realistic 25-node metro aggregation topology and a 22-node national topology. We show that by upgrading 25% of the links to HCF, we can significantly reduce the number of edgeDCs by up to 40%, while also reducing network equipment cost by up to 38%, compared to an SSMF-only network.| File | Dimensione | Formato | |
|---|---|---|---|
|
TNSM_Hollow_Core_accepted_version_2025.pdf
Accesso riservato
Dimensione
583.57 kB
Formato
Adobe PDF
|
583.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


