In the modern global Integrated Circuit (IC) supply chain, protecting intellectual property (IP) is a complex challenge, and balancing IP loss risk and added cost for theft countermeasures is hard to achieve. Using embedded configurable logic allows designers to completely hide the functionality of selected design portions from parties that do not have access to the configuration string (bitstream). However, the design space of redacted solutions is huge, with tradeoffs between the portions selected for redaction and the configuration of the configurable embedded logic. We propose ARIANNA, a complete flow that aids the designer in all the stages, from selecting the logic to be hidden to tailoring the bespoke fabrics for the configurable logic used to hide it. We present a security evaluation of the considered fabrics and introduce two heuristics for the novel bespoke fabric flow. We evaluate the heuristics against an exhaustive approach. We also evaluate the complete flow using a selection of benchmarks. Results show that using ARIANNA to customize the redaction fabrics yields up to 3.3× lower overheads and 4× higher eFPGA fabric utilization than a one-fits-all fabric as proposed in prior works.
ARIANNA: An Automatic Design Flow for Fabric Customization and eFPGA Redaction
Collini L.;Muscari Tomajoli C.;Pilato C.
2025-01-01
Abstract
In the modern global Integrated Circuit (IC) supply chain, protecting intellectual property (IP) is a complex challenge, and balancing IP loss risk and added cost for theft countermeasures is hard to achieve. Using embedded configurable logic allows designers to completely hide the functionality of selected design portions from parties that do not have access to the configuration string (bitstream). However, the design space of redacted solutions is huge, with tradeoffs between the portions selected for redaction and the configuration of the configurable embedded logic. We propose ARIANNA, a complete flow that aids the designer in all the stages, from selecting the logic to be hidden to tailoring the bespoke fabrics for the configurable logic used to hide it. We present a security evaluation of the considered fabrics and introduce two heuristics for the novel bespoke fabric flow. We evaluate the heuristics against an exhaustive approach. We also evaluate the complete flow using a selection of benchmarks. Results show that using ARIANNA to customize the redaction fabrics yields up to 3.3× lower overheads and 4× higher eFPGA fabric utilization than a one-fits-all fabric as proposed in prior works.| File | Dimensione | Formato | |
|---|---|---|---|
|
_ACM__FPGA_redaction_Extension.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


