Because of the high-magnitude earthquake and consequent tsunami that struck the east coast of Japan on March 11, 2011, at 14:46, Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant experienced station blackout (SBO) resulting in a nuclear accident unprecedented in time and extent. Simulation of such an accident by means of computer codes is largely dependent on the applied boundary conditions and physical models. However, still-unknown boundary conditions and unclear phenomena result in uncertain computed quantities. In this study, first, the boundary conditions of emergency systems are theoretically derived, starting from a discussion of the reactor available measured quantities and related uncertainties. Then, newly implemented physical models (e.g., wetwell condensation mechanism), which were not accounted for in historical studies of long-term SBOs, are explained. As an early method for accident clarification and explanation regarding effective boundary conditions, results from the SAMPSON severe accident code were compared with theoretical values. The results of SAMPSON compared with the measured quantities available have shown that despite successful safety operations performed by the plant operators in Fukushima Daiichi Unit 3, the eventual lack of batteries (for systems operation and measurement reading) led to plant conditions of low core water level at high pressure, nullifying the attempt of the subsequent alternative water injection to prevent core degradation.

Early phase accident progression analysis of Fukushima Daiichi unit 3 by the SAMPSON code

Pellegrini M.;
2014-01-01

Abstract

Because of the high-magnitude earthquake and consequent tsunami that struck the east coast of Japan on March 11, 2011, at 14:46, Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant experienced station blackout (SBO) resulting in a nuclear accident unprecedented in time and extent. Simulation of such an accident by means of computer codes is largely dependent on the applied boundary conditions and physical models. However, still-unknown boundary conditions and unclear phenomena result in uncertain computed quantities. In this study, first, the boundary conditions of emergency systems are theoretically derived, starting from a discussion of the reactor available measured quantities and related uncertainties. Then, newly implemented physical models (e.g., wetwell condensation mechanism), which were not accounted for in historical studies of long-term SBOs, are explained. As an early method for accident clarification and explanation regarding effective boundary conditions, results from the SAMPSON severe accident code were compared with theoretical values. The results of SAMPSON compared with the measured quantities available have shown that despite successful safety operations performed by the plant operators in Fukushima Daiichi Unit 3, the eventual lack of batteries (for systems operation and measurement reading) led to plant conditions of low core water level at high pressure, nullifying the attempt of the subsequent alternative water injection to prevent core degradation.
2014
Boundary conditions
Fukushima Daiichi
SAMPSON severe accident code
File in questo prodotto:
File Dimensione Formato  
06_2014_Pellegrini_Early Phase Accident Progression Analysis of Fukushima Daiichi Unit 3 by the SAMPSON Code.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1292869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact